Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Ultra-high cycle fatigue behavior for Ti6Al4V titanium alloy blade formed by selective laser melting
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG316
year,vol(issue):pagenumber:2020,45(11):89-93
Abstract:

 Poor fatigue life is the main bottleneck that restricts the wide application of selective laser melting (SLM) parts in the aviation field. Therefore, the ultra-high cycle fatigue properties and fracture mechanism of Ti6Al4V titanium alloy blade by SLM were studied by ultrasonic fatigue test method, and the microstructure and fatigue fracture morphology of Ti6Al4V titanium alloy blade were observed by metallographic microscope and scanning electron microscope respectively. The test results show that with the decreasing of stress amplitude, the fatigue life of Ti6Al4V titanium alloy blade formed by SLM shows a linear upward trend, and the fatigue strength is 280 MPa under the fatigue life of 109. Furthermore, there is a competitive mechanism in the initiation position of ultra-high cycle fatigue crack in Ti6Al4V titanium alloy blade formed by SLM, that is, the internal and subsurface competition initiation. In addition, the hole defect of material ultimately determines the crack initiation position and growth rate, and the size of hole defect directly determines the fatigue life.

Funds:
四川省科技厅项目(2019YJ0519);中国博士后基金 (2019M653396);四川大学-自贡政府战略合作支持项目 (2019CDZG-4);四川大学-宜宾政府战略合作支持项目(2019CDYB-24);四川大学博士后基金(2019SCU12056)
AuthorIntro:
门正兴(1980-),男,博士,高级工程师,教授 E-mail:amen1980@163.com
Reference:

 [1]李淼泉, 李浩放, 熊爱明, . 带阻尼台TC6钛合金叶片精密锻造[J]. 锻压技术, 2018, 43(7): 96-102.


Li M Q, Li H F, Xiong A M, et al. Precision forging of TC6 titanium alloy blade with damping[J]. Forging & Stamping Technology, 2018, 43(7): 96-102.


[2]焦胜博, 程礼, 陈煊, . Ti-6Al-4V超高周疲劳性能研究及可靠性寿命分析[J]. 稀有金属材料与工程, 2017, 46(5): 1277-1282.


Jiao S B, Cheng L, Chen X, et al. Study on very-high-cycle fatigue behavior of Ti-6Al-4V and analysis of reliability life[J]. Rare Metal Materials and Engineering, 2017, 46(5): 1277-1282.


[3]柏龙, 熊飞, 陈晓红, . SLM制备的Ti6Al4V轻质点阵结构多目标结构优化设计研究[J]. 机械工程学报, 2018, 54(5): 156-165.


Bai L, Xiong F, Chen X H, et al. Multi-objective structural optimization design of Ti6Al4V lattice structure formed by SLM[J]. Chinese Journal of Mechanical Engineering, 2018, 54(5): 156-165.


[4]李婧, 白培康, 王建宏, . 选区激光熔化工艺参数对Ti6Al4V粉末成型性的影响[J]. 测试科学与仪器, 2018, 9(1): 88-91.


Li J, Bai P K, Wang J H, et al. Effects of selective laser melting process parameters on powder formability of Ti6Al4V[J]. Journal of Measurement Science and Instrumentation, 2018, 9(1): 88-91.


[5]Maurizio Iebba, Antonello Astarita, Daniela Mistretta, et al. Influence of powder characteristics on formation of porosity in additive manufacturing of Ti-6Al-4V components[J]. Journal of Materials Engineering and Performance, 2017, 26(8): 4138-4147.


[6]张安峰, 张金智, 张晓星, . 激光增材制造高性能钛合金的组织调控与各向异性研究进展[J]. 精密成形工程, 2019, 11(4): 1-8.


Zhang A F, Zhang J Z, Zhang X X, et al. Research progress in tissue regulation and anisotropy of high-performance titanium alloy by laser additive manufacturing[J]. Journal of Netshape Forming Engineering, 2019, 11(4): 1-8.


[7]Boniotti L, Beretta S, Patriarca L, et al. Experimental and numerical investigation on compressive fatigue strength of lattice structures of AlSi7Mg manufactured by SLM[J]. International Journal of Fatigue, 2019, 128:105-181.


[8]马涛, 刘婷婷, 廖文和, . 激光选区熔化成形Ti-6Al-4V疲劳性能研究[J]. 中国激光, 2018, 45(11): 118-126.


Ma T, Liu T T, Liao W H, et al. Fatigue properties of Ti-6Al-4V produced by selective laser melting[J]. Chinese Journal of Lasers, 2018, 45(11): 118-126.


[9]Periane S, Duchosal A, Vaudreuil S, et al. Machining influence on the fatigue resistance of Inconel 718 fabricated by selective laser melting (SLM)[J]. Procedia Structural Integrity, 2019, 19: 415-422.


[10]任永明, 林鑫, 黄卫东. 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展[J]. 稀有金属材料与工程, 2017, 46(10): 3160-3168.


Ren Y M, Lin X, Huang W D. Progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 2017, 46(10): 3160-3168.


[11]徐仰立, 张冬云, 郭彦梧, . 选区激光熔化成形Ti6Al4V合金拉伸性能提高的研究[J]. 表面技术, 2019, 48(5): 108-115.


Xu Y L, Zhang D Y, Guo Y W, et al. Improvement of tensile properties of Ti6Al4V alloy by selective laser melting[J]. Surface Technology, 2019, 48(5): 108-115.


[12]陈迪, 王燎, 高海燕, . 3D打印钛合金内部孔洞的研究进展[J]. 应用激光, 2019, 39(1): 72-78.


Chen D, Wang L, Gao H Y, et al. Research progress on 3D printing internal cavity of titanium alloy[J]. Applied Laser, 2019, 39(1): 72-78.


[13]张海英, 董登科, 苏少普, . 后处理对激光选区熔化成形Ti-6Al-4V钛合金力学性能的影响[J]. 机械强度, 2019, 41(6): 1341-1344.


Zhang H Y, Dong D K, Su S P, et al. Effects of post processes on the mechanical properties of Ti-6Al-4V titanium alloy by selective laser melting[J]. Journal of Mechanical Strength, 2019, 41(6): 1341-1344.


[14]王磊, 马超, 陈洁. 热等静压对SLM工艺Ti-6Al-4V合金组织性能的影响[J]. 钢铁钒钛, 2019, 40(4): 39-44.


Wang L, Ma C, Chen J. Effect of hot isostatic pressing on the microstructure and mechanical properties of Ti-6Al-4V alloy fabricated by selective laser melting[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 39-44.


[15]胡富国, 柯林达, 肖美立, . 激光选区熔化成形Ti6Al4V合金的热处理组织演变机理[J]. 上海航天, 2019, 36(2): 96-103.


Hu F G, Ke L D, Xiao M L, et al. Heat treatment microstructural evolution of selective laser melting Ti6Al4V alloy[J]. Aerospace Shanghai, 2019, 36(2): 96-103.


[16]李敬, 刘敏, 马文有, . 工艺参数及热处理对选区激光熔化Ti6Al4V性能的影响研究[J]. 应用激光, 2017, 37(6): 779-786.


Li J, Liu M, Ma W Y, et al. Effects of process parameters and post-heat treatment on the properties of selective laser melted Ti6Al4V[J]. Applied Laser, 2017, 37(6): 779-786.


[17]李福泉, 孟祥旭, 董志宏, . 激光增材制造钢的后热处理研究现状[J]. 精密成形工程, 2018, 10(1): 97-108.


Li F Q, Meng X X, Dong Z H, et al. Research status of post-heat treatment of steel fabricated by laser additive manufacturing[J]. Journal of Netshape Forming Engineering, 2018, 10(1): 97-108.


[18]GB/T 26076—2010, 金属薄板(带)轴向力控制疲劳试验方法[S].


GB/T 26076—2010, Metal sheets and strips—Axial-force-controled fatigue testing method[S].

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com