Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Mold wear analysis and prediction on fine forging process for titanium alloy blade based on GA-ELM
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG156
year,vol(issue):pagenumber:2020,45(10):130-136
Abstract:

 In order to improve the efficiency and accuracy of analysis on mold wear amount in the fine forging process of titanium alloy blade, taking the fine forging process of TC11 titanium alloy blade as the research object, the numerical simulation was carried out by the finite element analysis software Deform-3D. Combined with the modified Archard wear model situation, the data of mold wear sample for blade in the fine forging process was established, and the mold wear amount was predicted by the genetic algorithm-extreme learning machine (GA-ELM) model. Taking the mold wear amount as output parameters, taking the related blade fine forging process parameters as input parameters, the mold wear amount was predicted. Combined with GA-BP neural network model optimized by genetic algorithm and original ELM model, the prediction results were compared. Finally, the mold wear amount analyzed by finite element software Deform verifies the accuracy and  reliability of GA-ELM model prediction result. The results show that the mold wear amount predicted by the GA-ELM model has a higher accuracy, and it is superior to other algorithms.

 
Funds:
贵州省科技支撑计划(黔科合支撑[2019]2019)
AuthorIntro:
梅益(1974-),男,博士,教授 E-mail:me@gzu.edu.cn 通讯作者:罗宁康(1987-),男,硕士,讲师 E-mail:luoningkang@163.com
Reference:

 
[1]Morimoto I Y. Die life and lubrication in warm forging
[J]. Journal of Materials Processing Technology, 1997,71:43-48.



[2]李彦奎,吕彦明,倪明明.基于正交试验的航空叶片精锻模具磨损分析
[J].工程设计学报,2017,24(6):632-637.

Li Y K, Lyu Y M, Ni M M. The wear analysis of precision blasting die for aviation blades based on orthogonal test
[J]. Chinese Journal of Engineering Design, 2017,24(6):632-637.


[3]李立安, 齐广霞, 史丽坤, 等. TC4钛合金叶片终锻成形过程仿真
[J]. 沈阳理工大学学报, 2014, 33(2):21-25.

Li L A, Qi G X, Shi L K, et al. Simulation of TC4 titanium alloy blades final forging forming
[J]. Journal of Shenyang Ligong University, 2014, 33(2):21-25.


[4]蔡力钢,刘海东,程强,等.基于正交试验法的模锻模具磨损分析及优化
[J].北京工业大学学报, 2020,(1):1-9.

Cai L G, Liu H D, Cheng Q, et al. Analysis and optimization of die forging wear based on orthogonal test method
[J]. Journal of Beijing University of Technology, 2020, (1):1-9.


[5]屈晓晓,张治民,李国俊,等.基于Archard模型的铝合金盒形件热挤压模具磨损研究
[J].热加工工艺,2019,48(9):153-157.

Qu X X, Zhang Z M, Li G J, et al. Research on wear of hot extrusion die of aluminum alloy box parts based on Archard model
[J]. Hot Working Technology,2019,48(9):153-157.


[6]李振红. 亚热控制成形过程模拟及模具磨损关键技术研究
[D]. 上海: 上海交通大学, 2009.

Li Z H. Sub Thermal Controlled Forming Process Simulation and Key Technology of Die Wear
[D]. Shanghai: Shanghai Jiao Tong University, 2009.


[7]Lee R S, Jou J L. Application of numerical simulation for wear analysis of warm forging die
[J]. Journal of Materials Prcossing Tech,2003,140(1-3):43-48.


[8]李宝聚,王兆辉,谭磊,等.热锻工艺参数对模具磨损影响的有限元分析
[J].模具工业,2014,40(9):6-11.

Li B J, Wang Z H, Tan L, et al. Finite element analysis of effect of hot forging process parameters on die wear
[J]. Die & Mould Industry,2014,40(9):6-11.


[9]张夏阳,黄其青,殷之平,等.基于GA-ELM的飞行载荷参数识别
[J].航空工程进展,2014,5(4):497-501.

Zhang X Y, Huang Q Q, Yin Z P, et al. Establishing a parametric flight loads identification method with GA-ELM model
[J]. Advances in Aeronautical Science and Engineering,2014,5(4):497-501.


[10]王小川. MATLAB神经网络43个案例分析
[M]. 北京:北京航空航天大学出版社, 2013.

Wang X C. MATLAB Neural Network 43 Case Analysis
[M]. Beijing:Beihang University Press, 2013.


[11]梅益,孙全龙,喻丽华,等.基于GA-ELM的铝合金压铸件晶粒尺寸预测
[J].金属学报,2017,53(9):1125-1132.

Mei Y, Sun Q L, Yu L H, et al. Grain size prediction of aluminum alloy dies castings based on GA-ELM
[J]. Acta Metallurgica Sinica,2017,53(9):1125-1132.


[12]Shamshirband S, Mohammadi K, Yee P L, et al. A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation
[J]. Renewable & Sustainable Energy Reviews, 2015, 52: 1031-1042.


[13]Sajjadi S, Shamshirband S, Alizamir M, et al. Extreme learning machine for prediction of heat load in district heating systems
[J]. Energy and Buildings, 2016, 122: 222-227.


[14]秦琼,刘树洁,赖旭,等.GA优化ELM神经网络的风电场测风数据插补
[J].太阳能学报,2018,39(8):2125-2132.

Qin Q, Liu S J, Lai X, et al. Interpolation of wind speed data in wind farm based on GA optimized ELM neural network
[J]. Acta Energiae Solaris Sinica,2018,39(8):2125-2132.


[15]温廷新,陈晓宇,邵良杉,等.参数优化GA-ELM模型在露天煤矿抛掷爆破的预测
[J].煤炭学报,2017,42(3):630-638.

Wen T X, Chen X Y, Shao L S, et al. Prediction on parameters optimized GA-ELM model for cast blasting in open-pit mine
[J]. Journal of China Coal Society,2017,42(3):630-638.


[16]徐承亮,曹志勇,王大军,等.GA-ELM混合算法预测齿轮坯终锻成形及预锻件优化
[J].机床与液压,2016,44(11):88-93.

Xu C L, Cao Z Y, Wang D J, et al. GA-ELM hybrid algorithm to predict finish forging and optimization of pre-forging for gear blank
[J]. Machine Tool & Hydraulics,2016,44(11):88-93.


[17]Mohammadpour T, Bidgoli A M, Enayatifar R, et al. Efficient clustering in collaborative filtering recommender system: Hybrid method based on genetic algorithm and gravitational emulation local search algorithm
[J]. Genomics, 2019,111(6): 1902-1912.


[18]石大维,李忠玉,叶敏,等.基于GA的Thevenin模型改进及参数辨识方法
[J].南方农机,2019,50(23):9-10.

Shi D W, Li Z Y, Ye M, et al. Improvement of Thevenin model and parameter identification method based on GA
[J]. China Southern Agricultural Machinery,2019,50(23):9-10.


[19]Wang Z Z, Sobey A. A comparative review between Genetic Algorithm use in composite optimization and the state-of-the-art in evolutionary computation
[J]. Composite Structures, 2019, 233:1-7.


[20]张喆,张永林,陈书锦.基于遗传BP神经网络的搅拌摩擦焊温度模型
[J].热加工工艺,2020,49(3):142-145.

Zhang J, Zhang Y L, Chen S J. Temperature model of friction stir welding based on genetic BP neural network
[J]. Hot Working Technology,2020,49(3):142-145.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com