Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Wire bending design and angle error analysis based on small bending radius
Authors: Gao Hongwei Guo Yanqing Zhang Qiang Duan Zhiqiang Li Sai 
Unit: North University of China Chongqing Jianshe Industry (Group) Co.  Ltd. 
KeyWords: wire bending  bending module  bending radius  error analysis  springback 
ClassificationCode:TG382
year,vol(issue):pagenumber:2019,44(3):29-35
Abstract:

For the wire bending process, when the diameter of the wire was small and the bending length was short, the bending radius could not be satisfied due to the excessive bending radius, a wire bending forming method based on small bending radius was proposed by the servo control technology. Then, the mathematical model of the wire bending process was established, and the relationship between feeding amount and bending angle of the bending knife was derived. Based on this, a bending machine for wire with a small bending radius was designed, and the bending module and the bending knife were designed in detail. Furthermore, the bending experiment of the copper wire with diameter Φ0.5 mm was conducted by the designed bending machine as the experimental prototype, and the theoretical value was compared with the actual bending angle. Combining with the experimental data, the bending angle error of the wire was analyzed, and it is concluded that the wire bending springback is the main factor affecting the bending angle. Finally, the empirical formula of the feeding amount and bending angle for the bending knife was derived by fitting the experimental data, and it was applied to the bending experiment to obtain the obvious bending compensation effect.

Funds:
山西省青年科技研究基金(2015021123);山西省重点实验室开放基金(XJZZ201605)
AuthorIntro:
高宏伟(1992-),男,硕士研究生,E-mail:602382436@qq.com;通讯作者:郭彦青(1980-),男,博士,副教授,E-mail:376719455@qq.com
Reference:


[1]肖寒. 轻量化结构件弯曲成形工艺研究
[D].大连:大连理工大学,2010.


Xiao H. Research on Bending Processes of Lightweight Structures
[D]. Dalian:Dalian University of Technology, 2010.



[2]朱慧. 线材折弯设备设计及线材折弯回弹特性研究
[D].镇江:江苏科技大学,2017.


Zhu H. Design of Wire-Bending Equipment and Research on Springback Properties of Wire
[D]. Zhenjiang:Jiangsu University of Science and Technology, 2017.



[3]Roger N Wright. Wire Technology: Process Engineering and Metallurgy
[M]. London: Butterworth-Heinemann, 2010.



[4]刘琪,徐雪峰,付春林,等.带长直管的小弯曲半径薄壁弯头推弯成形实验研究
[J].锻压技术,2018,43(5):62-67.


Liu Q, Xu X F, Fu C L, et al. Experiment research on push-bending of thin walled and small bending radius elbow with long straight tube
[J]. Forging & Stamping Technology, 2018,43(5):62-67.



[5]王飞,游有鹏.钣金V形折弯成形的回弹控制研究
[J].材料科学与工艺,2012,20(2):35-38,44.


Wang F, You Y P. Study on springback control of V mending process of metal sheet
[J]. Materials Science and Technology, 2012, 20 (2): 35-38,44.



[6]高嵩,于鹏,梁继才,等.型材三维拉弯成形数值模拟及回弹特性研究
[J].锻压技术,2018,43(6):53-59.


Gao S, Yu P, Liang J C, et al. Research on numerical simulation and springback characteristic for 3D stretch-bending parts
[J]. Forging & Stamping Technology, 2018,43(6):53-59.



[7]沈一凛. 数控弯丝机线材成形软件设计
[D]. 厦门:厦门大学,2009.


Shen Y L. Design on Software of Wire Modeling with CNC Wire Bending Machine
[D]. Xiamen:Xiamen University,2009.



[8]李殿起,张少华,郑鹏,等.基于弹性-幂强化材料模型的金属管材弯曲回弹分析
[J].锻压技术,2018,43(5): 51-55.


Li D Q, Zhang S H, Zheng P, et al. Bending springback analysis of metal pipe based on elasticity-exponentiation material model
[J]. Forging & Stamping Technology, 2018,43(5):51-55.



[9]韩刚. 旋转机头式数控弯丝机的设计与研究
[D]. 西安:西安建筑科技大学,2011.


Han G. Design and Research of the Rotary Head Numerical Control Bending Wire Machine
[D]. Xi′an :Xi′an University of Architecture and Technology, 2011.



[10]张婷玉. 精密机械系统装配精度预测与控制方法研究
[D]. 北京:北京理工大学,2016.


Zhang T Y. Assembly Accuracy Prediction and Control for Precision Mechanical System
[D]. Beijing:Beijing Institute of Technology, 2016.



[11]谭庆. 基于激光测距的空间大型弯曲圆钢管成型误差检测技术研究
[D].杭州:浙江大学,2016.


Tan Q. The Stuady of Error Detection in the Forming Process of the Large Spatial Bending Steel Pipe Based on Laser Ranging Principle
[D]. Hangzhou:Zhejiang University, 2016.



[12]刘鸿文.材料力学
[M].北京:高等教育出版社,2010.


Liu H W. Material Mechanics
[M]. Beijing: Higher Education Press, 2010.



[13]尚仲平,刘志亮,陈康元.高强度钢筋弯箍回弹角及箍筋精度研究
[J].锻压技术,2017,42(1):155-160.


Shang Z P, Liu Z L, Chen K Y. Analysis on hoop-bending springback angle and hooping precision for high strength steel bar
[J]. Forging & Stamping Technology, 2017, 42(1): 155-160.



[14]Baragetti S. A theoretical study on nonlinear bending of wires
[J]. Meccanica,2006,41(4): 443-458.



[15]Manel Rodríguez Ripoll, Sabine M Weygand,Hermann Riedel. Reduction of tensile residual stresses during the drawing process of tungsten wires
[J]. Materials Science and Engineering A,2010,527(13): 3064-3072.

 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com