Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research on crashworthiness of TRB structure for lightweight
Authors: Zhang Ziqiang  Liu Xiang  Wang Hao 
Unit: Hunan University 
KeyWords: Tailor Rolled Blank (TRB)  structural design  dynamic impact  crashworthiness  optimization under multiple loading cases 
ClassificationCode:U465.1
year,vol(issue):pagenumber:2018,43(9):146-156
Abstract:
Tailored Rolled Blank (TRB) is a new type of sheet metal with continuously variable thickness. Compared with conventional uniform thickness sheet metal, the material distribution is more reasonable with satisfaction of crash safety, so it has better lightweight properties. At present, the research on TRB is mainly aimed at the rolling precision and forming characteristics, and the crashworthiness of TRB structures was less studied. Therefore, the quasi-static and dynamic crushing tests for TRB with top-hot structure were carried out. Then, the crash model of TRB with top-hat structure was established by the BT shell element, and the effectiveness of FE model was verified by the test data. Finally, based on the non-dominated sorting genetic algorithm (NSGA-II) and meta-modeling technique, the optimization design of TRB with top-hat structure under the quasi-static/dynamic loading case and multiple loading cases was conducted. The results show that the optimization design under multiple loading cases not only improves the crashworthiness of structure, but also provides a series of compromise solutions for the practical problems under multiple loading cases.
Funds:
国家自然科学基金资助项目(51575172)
AuthorIntro:
作者简介:张自强(1992- ),男,硕士 E-mail:zhangziqiang314@163.com 通讯作者:刘翔(1992- ),男,硕士 E-mail:liuxiang_hnu@126.com
Reference:

[1]鲁春艳. 汽车轻量化技术的发展现状及其实施途径
[J]. 轻型汽车技术, 2007, (6):22-25.

Lu C Y. The current situation and implementation method of the lightweight technology of the vehicle
[J]. Light Vehicles, 2007, (6):22-25.


[2]张华伟. 轧制差厚板成形性能研究
[D]. 大连:大连理工大学, 2012.

Zhang H W. Research on Formability of Tailor Rolled Blank
[D]. Dalian:Dalian University of Technology, 2012.


[3]王宏雁, 徐少英. 车门的轻量化设计
[J]. 汽车工程, 2004, 26(3):349-353.

Wang H Y, Xu S Y. A study on light-weight design of car door
[J]. Automotive Engineering, 2004, 26(3):349-353.


[4]Li G Y, Xu F X, Huang X D, et al. Topology optimization of an automotive tailor-welded blank door
[J]. Journal of Mechanical Design, 2015, 137(5):1-8.


[5]Pan F, Zhu P, Zhang Y. Metamodel-based lightweight design of B-pillar with TWB structure via support vector regression
[J]. Computers & Structures, 2010, 88(1):36-44.


[6]Shi Y L, Zhu P, Shen L B, et al. Lightweight design of automotive front side rails with TWB concept
[J]. Thin-walled Structures, 2007, 45(1):8-14.


[7]Xu F X, Sun G Y, Li G Y, et al. Crashworthiness design of multi-component tailor-welded blank (TWB) structures
[J]. Structural and Multidisciplinary Optimization, 2013, 48(3):653-667.


[8]Sun G Y, Fang J G, Tian X Y, et al. Discrete robust optimization algorithm based on Taguchi method for structural crashworthiness design
[J]. Expert Systems with Applications, 2015, 42(9):4482-4492.


[9]Du J T, Huang C, Chen C Z, et al. Optimization to control parameters on rolling of tailor rolling blanks by orthogonal test
[J]. Applied Mechanics and Materials, 2011, 80:546-550.


[10]Zhang G J, Liu X H, Hu X L, et al. Horizontal velocity of variable gauge rolling: Theory and finite elements simulation
[J]. Journal of Iron and Steel Research (International), 2013, 20(10):10-16.


[11]Kopp R, Wiedner C, Meyer A. Flexibly rolled sheet metal and its use in sheet metal forming
[J]. Advanced Materials Research, 2005, 6-8:81-92.


[12]Meyer A, Wietbrock B, Hirt G. Increasing of the drawing depth using tailor rolled blanks—Numerical and experimental analysis
[J]. International Journal of Machine Tools and Manufacture, 2008, 48(5):522-531.


[13]Zhang H W, Liu L Z, Hu P, et al. Research on formability of tailor rolled blank in stamping process
[A]. The 11th International Conference on Numerical Methods in Industrial Forming Processes
[C]. Shenyang:AIP Publishing, 2013.


[14]包向军. 变截面薄板弯曲成形回弹的实验研究和数值模拟
[D]. 上海:上海交通大学, 2003.

Bao X J. Experimental Investigation and Numerical Simulation of Springback in Tailor Rolled Blanks Bending
[D]. Shanghai:Shanghai Jiao Tong University, 2003.


[15]马军伟, 张渝, 丁波. 基于TRB结构的汽车前纵梁轻量化设计
[J]. 汽车零部件, 2015, (3):21-23.

Ma J W, Zhang Y, Ding B. Lightweight design of automotive front rail based on tailor rolled blank structure
[J]. Automobile Parts, 2015, (3):21-23.


[16]兰凤崇, 李佳光, 马芳武, 等. 连续变截面板(TRB板)在汽车前纵梁中的应用及优化分析
[J]. 机械设计与制造, 2014, (1):25-28.

Lan F C, Li J G, Ma F W, et al. The application and optimization analysis of tailor rolled board on automotive front rail structure
[J]. Machinery Design & Manufacture, 2014, (1):25-28.


[17]Duan L B, Sun G Y, Cui J J, et al. Crashworthiness design of vehicle structure with tailor rolled blank
[J]. Structural and Multidisciplinary Optimization, 2016, 53(2):321-338.


[18]吴昊, 杨兵, 高永生, 等. 变厚板材料模型表征方法的比较研究
[J]. 锻压技术, 2014, 39(6):37-40.

Wu H, Yang B, Gao Y S, et al. Comparison study of description methods for material model of variable-thickness rolled blank
[J]. Forging & Stamping Technology, 2014, 39(6):37-40.


[19]高媛. 非支配排序遗传算法(NSGA)的研究与应用
[D].杭州:浙江大学, 2006.

Gao Y. Non-dominated Sorting Genetic Algorithm and Its Applications
[D]. Hangzhou:Zhejiang University, 2006.


[20]崔崇桢. 多种典型工况下的汽车正面碰撞性能协同优化
[D]. 长沙:湖南大学, 2014.

Cui C Z. The Study on Collaborative Optimization of Vehicle Frontal Impact Safety in Multipe Typical Situations
[D]. Changsha:Hunan University, 2014.


[21]吴广发. 基于LS-DYNA的汽车前纵梁碰撞吸能特性分析及其优化设计
[D]. 镇江:江苏科技大学, 2012.

Wu G F. Based on the LS-DYNA Optimum Design for Crash Energy Absorbtion Ability of Car Front Side Member
[D]. Zhenjiang:Jiangsu University of Science and Technology, 2012.


[22]杨兵, 高永生, 张文, 等. 基于变厚板(VRB)的汽车前纵梁内板开发
[J]. 塑性工程学报, 2014, 21(2):76-80.

Yang B, Gao Y S, Zhang W, et al. Development of vehicle front side member based on variable-thickness rolled blank
[J]. Journal of Plasticity Engineering, 2014, 21(2):76-80.


[23]GB/T 288.1—2010, 金属材料拉伸试验第1部分: 室温试验方法
[S].

GB/T 288.1—2010, Metallic materials—Tensile testing—Part1: Method of test at room temperature
[S].


[24]刘翔. TRB帽形梁结构的耐撞性研究及其优化设计
[D]. 长沙:湖南大学, 2016.

Liu X. Crashworthing Research and Optimization Design of TRB Hat-shaped Structure
[D]. Changsha:Hunan University, 2016.


[25]Hallquist J O. LS-DYNA Theory Manual
[M]. California:Livermore Software Technology Corporation, 2006.


[26]孙光永. 薄板结构成形与耐撞性优化设计关键技术研究
[D]. 长沙:湖南大学, 2011.

Sun G Y. Key Technology of Optimization Design Research on the Sheet Metal Forming and Thin-walled Structure Crashworthiness
[D]. Changsha:Hunan University, 2011.


[27]董朵. 基于析因设计的汽车车身的多变量抗撞性优化
[D]. 长沙:湖南大学, 2012.

Dong D. Multivariable Crashworthiness Optimization of Vehicle Body by Factorial Design
[D]. Changsha:Hunan University, 2012.


[28]Li G Y, Zhang Z S, Sun G Y, et al. Comparison of functionally-graded structures under multiple loading angles
[J]. Thin-Walled Structures, 2015, 94:334-347.


[29]Zhang Y, Sun G Y, Xu X P. Multiobjective crashworthiness optimization of hollow and conical tubes for multiple load cases
[J]. Thin-Walled Structures, 2014, 82: 331-342.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com