Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Constitutive model of cold compaction forming for aluminum alloy 6061 powder
Authors: Wang Bin Huang Shangyu Zhou Mengcheng  Lei Yu Sun Shimin 
Unit: (School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070  China) 
KeyWords: aluminum alloy  6061 powder compaction forming constitutive model numerical simulation secondary development 
ClassificationCode:TF121
year,vol(issue):pagenumber:2018,43(5):0-0
Abstract:

 In the process of powder compacting, the constitutive equation of material characterizing the deformation mechanism of powder is the basis of researching and analyzing on powder compaction process by numerical simulation method, so the established powder compaction constitutive equation is of great significance to research the rules of powder compaction forming for aluminum alloy and optimize the mold design and process parameters. Through uniaxial compression, radial compression (Brazilian disc experiment) and die compaction experiment for aluminum alloy 6061 powder, the rules of relevant material parameters changing with relative density were obtained and the Drucker-Prager Cap constitutive model was successfully established. By adding model parameters of aluminum alloy 6061 powder in density field of powder material,the simulation analysis of compaction process for aluminum alloy 6061 powder was carried out by secondary development user subroutine USDFLD of Abaqus simulation software, and the correctness of cold compaction DPC constitutive model for aluminum alloy 6061 powder was verified by the results of pressing force, displacement curve and relative density distribution. When the density is in the range of ρ=0.75-0.84, the simulation precision is high, that is, the modified DPC model can more accurately describe the late suppression behavior of aluminum alloy 6061 powder.

Funds:
国家自然科学基金资助项目(51475345)
AuthorIntro:
作者简介:王斌(1993-),男,硕士研究生 Email:15527455137@163.com 通讯作者:黄尚宇(1963-),男,硕士,教授 Email:huangshy@whut.edu.cn
Reference:

 
[1]陈梦婷,石建军,陈国平,等.粉末冶金发展状况
[J].粉末冶金工业,2017,27(4):66-72.


Chen M T,Shi J J,Chen G P, et al. Powder metallurgy development status
[J].Powder Metallurgy Industry, 2017, 27(4): 66-72.


[2]曹勇家,钟海林,郝权,等.粉末冶金生产工艺的两大发展
[J]. 粉末冶工业,2011,21(1):45-53.

Cao Y J, Zhong H L, Hao Q, et al. Two major developments in the powder metallurgical production process
[J] . Powder Metallurgy Industry, 2011, 21(1): 45-53.


[3]Biswas K. Comparison of various plasticity models for metal powder compaction processes
[J]. Journal of Materials Processing Technology,2005,166(1):107-115.


[4]郭彪. 铁基材料粉末锻造及致密化成形技术研究
[D].成都:西南交通大学,2012.

Guo B. Research on Forging and Densification Forming Technology of Ferrobased Materials
[D].Chengdu: Southwest Jiaotong University, 2012.


[5]Kyung Hun,Jung Min,Byung Min,et al. Densification simulation of compacted Al powders using multiparticle finite element method
[J]. Transactions of Nonferrous Metals Society of China, 2009,19(1):68-75.


[6]Harthong B, Jérier J F, Dorémus P, et al. Modeling of highdensity compaction of granular materials by the discrete element method
[J].International Journal of Solids & Structures, 2009,46(18):3357-3364.


[7]Rahman M M, Ariffin A K, Nor S S M. Development of a finite element model of metal powder compaction process at elevated temperature
[J]. Applied Mathematical Modelling, 2009,33(11): 4031-4048.


[8]Shin H,Kim J B. Physical interpretations for cap parameters of the modified DruckerPrager cap model in relation to the deviator stress curve of a particulate compact in conventional triaxial testing
[J]. Powder Technology,2015,280(10):94-102. 


[9]Krok A, GarciaTrianes P,Peciar M,et al. Finite element analysis of thermomechanical behavior of powders during tableting
[J]. Chemical Engineering Research & Design,2016,110:141-151.


[10]周蕊.粉末冶金压坯残余应力与裂纹损伤研究
[D].天津:天津大学,2013.

Zhou R. Study on Residual Stress and Crack Damage of Powder Metallurgical Compaction Billet
[D]. Tianjin: Tianjin University, 2013.


[11]Zhou M C,Huang S Y,Hu J H, et al. A densitydependent modified DruckerPrager Cap model for die compaction of Ag57.6Cu22.4Sn10In10 mixed metal powders
[J].Powder Technology,2017,305:183-196.


[12]Almansttter J. A modified DruckerPrager cap model for finite element simulation of doped tungsten powder compaction
[J]. Int. Journal of Refractory Metals & Hard Materials, 2015,50:290-297.


[13]周洁,陆建生,左孝青,等.铝粉末压制过程有限元模拟研究
[J].云南冶金,2005,34(5):47-51.

Zhou J, Lu J S, Zuo X Q, et al. Finite element simulation study of aluminum powder pressing process
[J]. Yunnan Metallurgy, 2005, 34(5): 47-51.


[14]Huang F, An X Z, Zhang Y X, et al. Multiparticle FEM simulation of 2D compaction on binary Al/SiC composite powders
[J]. Powder Technology,2017,314:39-48.


[15]郑欣,王广海,陈建,等. 6061铝合金真空钎焊技术的发展
[J]. 轻合金加工技术,2014,42(1):8-12.

Zheng X, Wang G H, Chen J, et al. Development of vacuum brazing technology for 6061 aluminum alloy
[J]. Light Alloy Processing Technology, 2014, 42(1): 8-12.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com