Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Coupled thermal-mechanical finite element model in shear-bending process of Ti-alloy thin-walled tube under differential temperature fields constraints
Authors: Yan Jing1 2 3 Wu Wei1 2 3 
Unit: 1. Aeronautical Key Laboratory for Plastic Forming Technology 2. Beijing Key Laboratory of Digital Plastic Forming Technology and Equipment 3. Beijing Aeronautical Manufacturing Technology Research Institute 
KeyWords: Ti-alloy thin-walled tube  shear bending  differential temperature fields constraints  coupled thermal-mechanical  finite element 
ClassificationCode:
year,vol(issue):pagenumber:2016,41(4):125-133
Abstract:

Based on the dynamic explicit coupled thermal-mechanical (CT) module in software ABAQUS, a 3D CT FE model of TA2 thin-walled tubes was established to simulate shear-bending process under differential temperature fields constraints. The key problems including the material model, the boundary conditions, the element types and sizes, and quality amplification were discussed. The reliability of the FE model was verified by the experimental results. The results show that quality amplification factor of 10000 is the most appropriate when considering the simulation precision and efficiency of the FE model. The smaller the element size is, the lower is the temperature of force transmission area in the straight line of tube; the distribution of simulation temperature field in the tube becomes stable when element size is less than 1.0 mm×1.0 mm. Compared with the CT continuum elements,the thickness strains distributions simulated by CT shell elements with the element size 1.0 mm×1.0 mm are closer to the experimental results.

Funds:
国家自然科学基金资助项目(51305415)
AuthorIntro:
闫晶(1981-),男,博士,高级工程师
Reference:

[1]Goodarzi M, Kuboki T, Murata M. Deformation analysis for the shear bending process of circular tubes[J]. Journal of Materials Processing Technology, 2005, 162: 492-497.

[2]Yuan S J, Han C, Wang Y, et al. Shear hydro-bending of light alloy tubes[A]. 10th International Conference on Technology of Plasticity[C].German: Aachen, 2011.

[3]Palumbo G, Tricarico L. Numerical and experimental investigations on the warm deep drawing process of circular aluminum alloy specimens[J]. Journal of Materials Processing Technology, 2007, 184: 115-123.

[4]Boogaard A H, Hue′tink J. Simulation of aluminium sheet forming at elevated temperatures[J]. Computer Methods in Applied Mechanics and Engieering, 2006, 195: 6691-6709.

[5]Kim H S, Koc M. Numerical investigations on springback characteristics of aluminum sheet metal alloys in warm forming conditions[J]. Journal of Materials Processing Technology, 2008, 204: 370-383.

[6]Zhang Z Y, Yang H, Li H, et al. Thermo-mechanical coupled 3D-FEmodeling of heat rotary draw bending for large-diameter thin-walled CP-Ti tube[J]. International Journal of Advanced Manufacturing Technology, 2014, 72:1187-1203.

[7]李虎, 詹梅, 杨合,等. 钛合金薄壁壳体强旋热力耦合有限元分析[J]. 机械工程学报, 2008, 44(6): 187-192.

Li H, Zhan M, Yang H, et al. Coupled thermal-mechanical FEM analysis of power spinning of titanium alloy thin-walled shell[J]. Chinese Journal of Mechanical Engineering, 2008, 44(6): 187-192.

[8]Zhou G, Hua L, Qian D S, et al Effects of axial rolls motions on radial-axial rolling process for large-scale alloy steel ring with 3D coupled thermo-mechanical FEA[J]. International Journal of Mechanical Sciences, 2012, 59: 1-7.

[9]陈宇, 康达昌, 金晓鸥. 钛合金锥形件温热剪旋热力耦合有限元模拟[J]. 材料科学与工艺, 2006,14(1):18-21.

Chen Y, Kang D C, Jin X O. FEM coupled thermal simulation of warm shear spinning of cone workpiece of titanium alloy[J]. Materials Science & Technology, 2006,14(1): 18-21.

[10]刘红生, 包军, 邢忠文, 等. 高强钢板热冲压成形热力耦合数值模拟[J]. 材料科学与工艺, 2010, 18(4): 460-463.

Liu H S, Bao J, Xing Z W, et al. Numerical simulation on channel shape hot stamping of 22MnB5 high-strength sheet metal based on thermal-mechanical coupled method[J]. Materials Science & Technology, 2010,18(4): 460-463.

[11]Tao Z J, Yang H, Li H, et al. Coupled thermo-mechanical FE simulation of unloading cooling springback in NC heating bending of large diameter thin-walled commercial pure titanium tube[J]. Procedia Engineering, 2014, 81: 2273-2279.

[12]《中国航空材料手册》编辑委员会. 中国航空材料手册[M]. 北京:中国标准出版社, 2001.

Editor Commitee of “China Aeronautical Materials Handbook”. China Aeronautical Materials Handbook[M]. Beijing: China Standard Press, 2001.

[13]赵镇南. 传热学[M]. 北京:高等教育出版社, 2002.

Zhao Z N. Heat Transfer[M]. Beijing: Higher Education Press, 2002.

[14]理有亲, 林兆荣,陈春奎,等. 钛板冲压成形技术[M]. 北京:国防工业出版社, 1986.

Li Y Q, Lin Z R,Chen C K,et al. Ti-alloy Sheet Metal Forming Technology[M]. Beijing: National Defence Industry Press, 1986.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com