Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of die parameters on residual stresses of stainless steel
Authors: Xiao Lianghong  Xiang Junzhong  Li Yu  Lin Yefang  Cao Yaxiong 
Unit: Xiangtan University 
KeyWords: residual stress  split-ring test  FEM numerical simulation  stainless steel 304  cylindrical drawing cup 
ClassificationCode:
year,vol(issue):pagenumber:2015,40(1):21-26
Abstract:

Huge residual stress leads to stress corrosion cracking of the cylindrical drawing cups easily. The influences of die parameters (Die corner radius and punch-die clearance) on the residual stress of stainless steel 304 cylindrical drawing parts were investigated by seven sets of split-ring experiments and numerical simulations. The opening distances of rings were measured,the residual stresses were calculated by FEM numerical simulations of software ABAQUS. The results show that the circumferential residual stress increases firstly with the increase of the drawing punch-die clearance, then almost keeps constant when the clearance is bigger than 1.06t. The die corner radius is not affected by the circumferential residual stress. Radial residual stress in the middle of thickness increases with the increase of the drawing punch-die clearance and the die corner radius. As a result, a smaller punch-die clearance is more effective to reduce the residual stress in the wall of stainless steel 304 cylindrical drawing cups.

Funds:
国家自然科学基金资助项目(51175445)
AuthorIntro:
肖良红(1968-),男,博士,副教授,硕士生导师
Reference:


[1]Rossini N S, Dassisti M, Benyounis K Y, et al. Methods of measuring residual stresses in components[J]. Materials & Design, 2012, 35: 572-588.



[2]Trufyakov V, Mikheev P, Kudryavtsev Y, et al. Fatigue endurance of welded joints,residual stresses and fatigue improvement treatments[A].Ship Structure Symposium 93[C]. USA:Arlington, 1993.



[3]白明远, 刘丽玉, 吴俊峰, 等. 弹壳开裂失效分析[J]. 理化检验: 物理分册, 2011, 47(3): 180-183.


Bai M Y, Liu L Y, Wu J F, et al. Failure analysis on cracking of cartridge case[J]. Physical Testing and Chemical Analysis: Physical Testing, 2011, 47(3): 180-183.



[4]张彤, 张李超, 余俊, 等. 板料V形自由折弯成形数据库校正方法[J]. 锻压技术,2014,39(3):57-61.


Zhang T, Zhang L C, Yu J, et al. Correction method of database in V-shaped air-bending forming of metal sheet[J]. Forging & Stamping Technology, 2014,39(3):57-61.



[5]Tekner Z. An experimental study on the examination of springback of sheet metals with several thicknesses and properties in bending dies[J]. Journal of Materials Processing Technology, 2004, 145(1): 109-117.



[6]刘雨阳, 闵峻英, 辛立久, 等. 热冲压成形工艺参数对硼钢板帽形件回弹影响分析[J]. 锻压技术,2014,39(3):34-37.


Liu Y Y, Min J Y, Xin L J, et al. Effect of hot stamping process parameters on springback of hat-shaped boron steel parts[J]. Forging & Stamping Technology, 2014,39(3):34-37.



[7]熊雄, 姚斌, 欧阳醌, 等. 板料折弯成形虚拟仿真技术研究[J]. 锻压技术,2014,39(3):15-19.


Xiong X, Yao B, Ouyang K, et al. Study on virtual animation technology of sheet metal bending[J]. Forging & Stamping Technology, 2014,39(3):15-19.



[8]Livatyali H, Altan T. Prediction and elimination of springback in straight flanging using computer aided design methods: Part 1. Experimental investigations[J]. Journal of Materials Processing Technology, 2001, 117(1): 262-268.



[9]Grèze R, Manach P Y, Laurent H, et al. Influence of the temperature on residual stresses and springback effect in an aluminium alloy[J]. International Journal of Mechanical Sciences, 2010, 52(9): 1094-1100.



[10]Laurent H, Grèze R, Manach P Y, et al. Influence of constitutive model in springback prediction using the split-ring test[J]. International Journal of Mechanical Sciences, 2009, 51(3): 233-245.



[11]Colgan M, Monaghan J. Deep drawing process: analysis and experiment[J]. Journal of Materials Processing Technology, 2003,132(1):35-41.



[12]黄毓晖, 轩福贞, 涂善东. 304 奥氏体不锈钢在酸性氯离子溶液中应力腐蚀性能的研究[J]. 压力容器, 2009, 26(7): 5-10.


Huang Y H, Xuan F Z, Tu S D. Study on stress corrosion property of 304 austenitic stainless steelin the environment of acid chloride solution[J]. Pressure Vessels, 2009,26(7): 5-10.



[13]Hurley M F, Olson C R, Ward L J, et al. Transgranular stress corrosion cracking of 304L stainless steel pipe clamps in direct use geothermal water heating applications[J]. Engineering Failure Analysis, 2013, 33: 336-346.



[14]Osama M Alyousif, Rokuro Nishimura. On the stress corrosion cracking and hydrogen embrittlement of sensitized austenitic stainless steels in boiling saturated magnesium chloride solutions: Effect of applied stress[J]. Corrosion Science, 2008(50):2919–2926.



[15]申勇峰, 李晓旭, 薛文颖, 等. 304 不锈钢拉伸变形过程中的马氏体相变[J]. 东北大学学报:自然科学版, 2012, 33(8): 1125-1128.


Shen Y F, Li X X, Xue W Y, et al. Changes in martensite fraction of 304SS in tensile deformation[J]. Journal of Northeastern University:Natural Science, 2012, 33(8):1125-1128.



[16]Hecker S S, Stout M G, Staudhammer K P, et al. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part I. Magnetic measurements and mechanical behavior[J]. Metallurgical Transactions A, 1982, 13(4): 619-626.



[17]De A K, Speer J G, Matlock D K, et al. Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2006, 37(6): 1875-1886.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com