Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Development of nuclear power main-pipe manufacturing technology
Authors: Zhang Lei  Feng Xiao  Li Mingquan  Wang Xin  Lin Feng 
Unit: Tsinghua University China 22MCC Group Corporation Ltd. 
KeyWords: AP1000  thick-walled special pipe  upset-extruding  nuclear power main-pipe 
ClassificationCode:TG376.3
year,vol(issue):pagenumber:2014,39(6):1-8
Abstract:

Nuclear power main-pipe is one of the key parts in nuclear island. The third generation nuclear power technique AP1000 developed by Westinghouse requires that the design lifetime of nuclear power main-pipe is 60 years, and no welding seam is allowed on the pipe body. Thus those conventional manufacturing techniques of nuclear power main-pipe face serious challenges. Currently, the method to manufacture AP1000 nuclear power main-pipe in Chinese industry is that the solid ingot casting is used to be initial billet, and then a solid spindle blank with both angled nozzle-like bosses is formed through free forging process, followed by machining performed to obtain the inner cavity of main-pipe, which is characterized by lower material utilization, longer production cycle and unstable quality of product. The history of nuclear power main-pipe manufacturing technology was reviewed. A new nuclear power main-pipe for AP1000 manufacturing technique based on upset-extruding technique was introduced. Numerical simulation analysis indicates that the new technique has advantages such as material saving, high-efficiency and better inner quality of product over conventional techniques for forming main-pipe.

Funds:
国家科技重大专项资助项目(2012ZX04010082);国家高技术研究发展计划资助项目(863计划,2012AA040202)
AuthorIntro:
Reference:


[1]卢华兴. AP1000核电站主管道国产化研制进展[J]. 上海金属,2010,(4): 29-32.Lu Huaxing. Research and development of AP1000 reactor coolant pipe in China[J]. Shanghai Metals,2010,(4): 29-32.
[2]Schulz T L. Westinghouse AP1000 advanced passive plant[J]. Nuclear Engineering and Design, 2006, 236(14-16): 1547-1557.
[3]孙凤先,马庆贤. AP1000主管道控制锻造工艺探索[J]. 大型铸锻件,2010,(4): 30-32.Sun Fengxian, Ma Qingxian. Research on the control forging processes for AP1000 main pipe[J]. Heavy Casting and Forging, 2010,(4): 30-32.
[4]陆世英,张廷凯,康喜范,等. 不锈钢[M]. 北京: 原子能出版社, 1995.Lu Shiying, Zhang Tingkai, Kang Xifan, et al. Stainless Steel[M]. Beijing: Atomic Energy Press, 1995.
[5]中国特钢企业协会不锈钢分会. 不锈钢实用手册[M]. 北京: 中国科学技术出版社, 2003.China Special Steel Enterprises Association. Stainless Steel Practical Handbook[M]. Beijing: China Science and Technology Press, 2003.
[6]刘建章,赵文金,薛祥义,等. 核结构材料[M]. 北京: 化学工业出版社, 2007.Liu Jianzhang, Zhao Wenjin, Xue Xiangyi, et al. Nuclear Structural Materials[M]. Beijing: Chemical Industry Press, 2007.
[7]高宗仁,李学锋,王竞东,等. 世界不锈钢耐热钢牌号手册[M]. 太原: 山西科学技术出版社, 2006.Gao Zongren, Li Xuefeng, Wang Jingdong, et al. Brand Manual of Stainless Steel and Heat Resistant Steel[M]. Taiyuan: Shanxi Science and Technology Press, 2006.
[8]柏永青,陈明明,陈慧琴. 316LN热变形行为及动态再结晶晶粒的演变规律[J]. 太原科技大学学报, 2009,(5): 424-427.Bai Yongqing, Chen Mingming, Chen Huiqin. Hot deformation and dynamic recrystallization behaviors of 316LN[J]. Journal of Taiyuan University of Science and Technology. 2009,(5): 424-427.
[9]陈明明. 316LN不锈钢锻造过程晶粒演变规律实验与模拟研究[D].太原:太原科技大学, 2010.Chen Mingming. Experimental and Simulational Research on the Evolution of Grain of 316LN Stainless Steel during Forge Process[D]. Taiyuan:Taiyuan University of Science and Technology,2010.
[10]陈明明,何文武,刘艳光,等. 316LN奥氏体不锈钢亚动态再结晶行为的研究[J]. 锻压装备与制造技术, 2010,45(4): 83-86.Chen Mingming, He Wenwu, Liu Yanguang, et al. Research on meta-dynamic recrystallization of 316LN austenitic stainless steel[J]. China Metalforming Equipment and Manufacturing Technology, 2010,45(4): 83-86.
[11]潘品李,钟约先,马庆贤,等. 316LN钢多道次变形条件下的动态再结晶行为[J]. 塑性工程学报, 2011,18(5): 13-18.Pan Pinli, Zhong Yuexian, Ma Qinxian, et al. Research on the dynamic recrystallization behavior of 316LN steel under multi-pass deformation[J]. Journal of Plasticity Engineering, 2011, 18(5): 13-18.
[12]陈书贵. 316L和316LN奥氏体不锈钢的低温疲劳性能[J]. 大型铸锻件,1993,(4): 72-75.Chen Shugui. Fatigue performance of 316L and 316LN austenitic stainless steel under low temperature[J]. Heavy Casting and Forging, 1993,(4): 72-75.
[13]康欢举,杨爽,孙华. 316LN的应力腐蚀开裂实验研究[J]. 核动力工程, 2011,(6): 101-104.Kang Huanju, Yang Shuang, Sun Hua. Experimental study on stress corrosion cracking of 316LN[J]. Nuclear Power Engineering, 2011,(6): 101-104.
[14]Yang W, Guangfu L, Chunbo H, et al. Stress corrosion cracking of nitrogen-containing stainless steel 316LN in high temperature water environments[J]. Chinese Journal of Mechanical Engineering, 2010,(6): 677-683.
[15]Begum Z, Poonguzhali A, Basu R, et al. Studies of the tensile and corrosion fatigue behaviour of austenitic stainless steels[J]. Corrosion Science, 2011, 53(4): 1424-1432.
[16]Lorenzetto P, Hélie M, Molander A. Stress corrosion cracking of AISI 316LN stainless steel in ITER primary water conditions[J]. Journal of Nuclear Materials, 1996, (233-237), Part 2: 1387-1392.
[17]Shaikh H, Amirthalingam R, Anita T, et al. Evaluation of stress corrosion cracking phenomenon in an AISI type 316LN stainless steel using acoustic emission technique[J]. Corrosion Science, 2007, 49(2): 740-765.
[18]Kim D W. Influence of nitrogen-induced grain refinement on mechanical properties of nitrogen alloyed type 316LN stainless steel[J]. Journal of Nuclear Materials, 2012, 420(1-3): 473-478.
[19]Kim D W, Chang J, Ryu W. Evaluation of the creep-fatigue damage mechanism of Type 316L and Type 316LN stainless steel[J]. International Journal of Pressure Vessels and Piping, 2008, 85(6): 378-384.
[20]Shaikh H, Anita T, Dayal R K, et al. Effect of metallurgical variables on the stress corrosion crack growth behaviour of AISI type 316LN stainless steel[J]. Corrosion Science,2010, 52(4): 1146-1154.
[21]Lind A, Bergenlid U. Mechanical properties of hot isostatic pressed type 316LN steel after irradiation[J]. Journal of Nuclear Materials,2000, (283-287), Part 1: 451-454.
[22]Jones R. Some critical corrosion issues and mitigation strategies affecting light water reactors [J]. Materials Performance, 1996, 35(7):63-67.
[23]束国刚,薛飞,遆文新,等. 核电厂管道的流体加速腐蚀及其老化管理[J]. 腐蚀与防护,2006,(2): 72-76.Shu Guogang, Xue Fei, Ti Wenxin, et al. Flow accelerated corrosion and aging management in nuclear power plants[J]. Crossion and Protection, 2006,(2): 72-76.
[24]那福利. AP1000主管道的国产化试制和制造许可证审评[J]. 核安全, 2010,(2): 19-24.Na Fuli. The localization development and manufacture license review of AP1000 primary piping[J]. Nuclear Safety, 2010,(2): 19-24.
[25]张永胜,孙宇. AP1000核电主管道锻件锻造方法[P]. 中国专利:201010259575.7,2010-08-17.Zhang Yongsheng, Sun Yu. Forging technology of AP1000 nuclear mainpipe[P]. China Patent:201010259575.7,2010-08-17.
[26]张灵芳,陈永波,叶雨. 带支管嘴的核电主管道管坯的锻造方法[P]. 中国专利:200910057934.8,2009-09-22.Zhang Lingfang, Chen Yongbo, Ye Yu. Forging technology of nuclear mainpipe billet with filler neck[P]. China Patent:200910057934.8, 2009-09-22.
[27]胡朝备,谢培德,许民,等. 百万千瓦级核电主管道的锻造成型方法[P]. 中国专利:200810043768.1,2008-09-09.Hu Zhaobei, Xie Peide, Xu Min, et al. Forging technology of mega-kilowatt class nuclear main pipe[P].China Patent: 200810043768.1,2008-09-09.
[28]薛恒信,薛丹,粟建宏,等. 在卧式镗床上加工核电主管道弯头弯曲内孔的方法及装置[P]. 中国专利:201010142971.1,2010-04-09.Xue Hengxin, Xue Dan, Su Jianhong, et al. Processing method and device for the machining of nuclear main pipe inner hole on horizontal boring machine[P]. China Patent:201010142971.1,2010-04-09.
[29]薛恒信,薛丹,粟建宏,等. 在卧式镗床上加工核电主管道弯头弯曲内孔的装置[P]. 中国专利:201020154272.4,2010-05-04.Xue Hengxin, Xue Dan, Li Jianhong, et al. Processing device for the machining of nuclear main pipe inner hole on horizontal boring machine [P]. China Patent:201020154272.4,2010-05-04.
[30]谢坤. 核电主管道压制方法[P]. 中国专利:201010161456.8,2010.Xie Kun. Forging method of nuclear main pipe[P]. China Patent:201010161456.8,2010.
[31]宋树康,刘志颖,郑建能,等. 第三代AP1000核电主管道的研制[J]. 大型铸锻件, 2011,(1): 1-4.Song Shukang, Liu Zhiying, Zheng Jianneng, et al. Study on AP1000 main piping of the third generation nuclear power[J]. Heavy Casting and Forging, 2011,(1): 1-4.
[32]陈红宇,宋树康,杜军毅. AP1000锻造主管道制造技术进展[J]. 大型铸锻件,2013,(2): 1-3.Chen Hongyu, Song Shukang, Du Junyi. Manufacturing technology progress for AP1000 forging main pipeline[J]. Heavy Casting and Forging, 2013,(2): 1-3.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com