Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research on carbon fibers structure of electromagnetic riveting for titanium alloy rivet
Authors: CUI Jun-jia SUN Li-qiang  MENG Ling-bo  ZHANG Mao-yun 
Unit: 1. Material Science and Engineering School  Harbin Institute of Technology  Harbin 150001 China  2.National Key Laboratory for Precision HotMachinery Corporation Beijing 100076 China 
KeyWords: titanium alloy rivet  electromagnetic riveting  carbon fibers  microstructure 
ClassificationCode:TG391
year,vol(issue):pagenumber:2013,38(2):47-52
Abstract:

Electromagnetic riveting (EMR) is a new type of riveting process, which is obviously superior to the traditional riveting technique in riveting of high strength rivet and composites structure. Electromagnetic riveting precast aperture matching tests were carried out for titanium alloy rivets with the diameter of Φ4, Φ5 and Φ6 mm, the reasonable bore diameters of Φ4.1, Φ5.2, and Φ6.2/Φ6.3 mm were got. The shear strength and microstructure are little distinction between pneumatic riveting and electromagnetic riveting for smaller diameter rivets (Φ4, Φ5 mm), while in respect of lager diameter (Φ6 mm) titanium alloy rivet, pneumatic riveting is far worse than electromagnetic riveting. Electromagnetic riveting can highly enhance the riveting quality of titanium alloy rivet in carbon fibers structure, and the probability of cracking is only 0.5%.
 

Funds:
AuthorIntro:
Reference:


[1]王云渤,张关康. 飞机装配工艺学[M]. 北京:国防工业出版社,1990.
[2]Brown T, Hartmann J, Zieve P B. Qualification of the EMR for swaging collars on the 787[J]. SAE Technical Paper Series, 2005,(1):32-99.
[3]Guden M, Celik E, Akar E, et al. Compression testing of a sintered Ti6Al4V powder compact for biomedical applications[J]. Materials Characterization, 2005, 54(45): 399-408.
[4]Guo Q M, Hou H L, Ren X P. Hydrogen absorption kinetics of porous Ti6Al4V Alloys[J]. Journal of alloys and Compounds, 2009, 486(12): 754-758.
[5]邓将华, 李春峰. 电磁铆接技术研究概况及发展趋势[J]. 锻压技术,2006,31(5):10-14.
[6]Schmitt H A, Skkhon J S. High Impact Portable Riveting Apparatus. US, 3559269[P]. 1968.
[7]瞿履和. 国外电磁铆接技术的进展[J]. 航空工艺技术,1997,(4):24-25.
[8]许国康. 电磁铆接技术的发展、设备研制及应用探讨[J]. 航空制造技术,2010,(23):38-41.
[9]代瑛. 电磁铆接技术在复合材料结构中的应用研究[D]. 西安:西北工业大学,2007.
[10]邓将华. 电磁铆接数值模拟与试验研究[D]. 哈尔滨:哈尔滨工业大学,2008.
[11]于海平. 电磁铆接加载速率对TA1铆钉变形影响研究[J]. 哈尔滨工程大学学报,2011,(3):378-383.
[12]YS1021988,薄壁加筋壳结构制造、验收技术条件[S].

 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com