网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不同扩孔性能的980 MPa级冷轧高强度钢强韧性分析
英文标题:Analysis on strength and toughness of 980 MPa grade cold-rolled high-strength steel with different hole expansion properties
作者:刘家麟 
单位:四川工业科技学院 智能制造与车辆工程学院 
关键词:扩孔率 双相钢 高扩孔钢 极限冷弯 叠片冲击 强韧性 
分类号:TG142.1;U461.91
出版年,卷(期):页码:2025,50(8):301-308
摘要:

 选取980 MPa级别双相钢DP980和高扩孔钢DP980-λ开展强韧性对比分析。首先,对比分析两种材料的基体组织、化学成分和退火工艺等,以及静态力学性能、扩孔性能;然后,采用极限冷弯试验对两种材料的极限冷弯角进行对比分析,并对比基体裂纹的差异;基于夏比摆锤冲击试验,对不同温度下两种材料的叠片冲击韧性进行对比分析。结果表明:相较于双相钢DP980,高扩孔钢DP980-λ的屈服强度为746.7 MPa, 提升了约11.85%,屈强比为0.712,提升了12%,强塑积为14.99 GPa·%,提升了约8%;扩孔率均值为63.33%,为双相钢DP980的2.53倍;极限冷弯角达到了96.5°,提升了12.2%;冲击功受温度变化的影响较小,平均值为79.4 J。而双相钢DP980的冲击功受温度影响略大,平均值仅为62.0 J,变化幅度达到13.79%。高扩孔钢DP980-λ表现出更优异的强韧性,能够吸收大量的能量而不发生断裂,表现出更高的安全裕度。

 The comparative analysis of strength and toughness for 980 MPa grade dual-phase steel DP980 and high hole expansion steel DP980-λ was conducted. The matrix microstructure, chemical composition, annealing process, static mechanical properties and hole expansion performance of two materials were compared and analyzed. Furthermore, the ultimate cold bending angles of two materials were compared and analyzed by the ultimate cold bending test, and the difference of matrix cracks was also compared. Finally, based on the Charpy pendulum impact test, the laminated impact toughness of two materials at different temperatures was compared and analyzed. The results show that compared with dual-phase steel DP980, the yield strength of  high hole expansion steel DP980-λ is 746.7 MPa, an increase of about 11.85%, the yield strength ratio is 0.712, an increase of 12%, and the strength-plasticity product is 14.99 GPa·%, an increase of about 8%, the average hole expansion rate is 63.33%, which is 2.53 times that of dual-phase steel DP980, and the ultimate cold bending angle reaches 96.5°, an increase of 12.2%. The impact energy is less affected by temperature change, and the average impact energy is 79.4 J. The impact energy of dual-phase steel DP980 is slightly more affected by temperature, and the average impact energy is only 62.0 J, with a variation range of 13.79%. Thus, the high hole expansion steel DP980-λ shows better strength and toughness, and can absorb a lot of energy without breaking, showing a higher safety margin.  

 
基金项目:
作者简介:
作者简介:刘家麟(1982-),男,硕士,讲师 E-mail:zzgyyyzcj@yeah.net
参考文献:

 [1]韩赟,刘华赛,肖宝亮.我国汽车用钢开发应用现状及发展趋势[J].轧钢, 2024, 41(5):108-120.


Han Y, Liu H S, Xiao B L. Progress in the development and application of automotive steels in China [J]. Steel Rolling, 2024, 41(5): 108-120.

[2]宋峰雨,张朋彦,王平,等. 板条贝氏体中少量铁素体对高强钢强韧性的影响[J]. 东北大学学报(自然科学版), 2014, 35(5):686-689. 

Song F Y, Zhang P Y, Wang P, et al. Effects of the small amount of ferrite in bainite laths on the strength and toughness of high strength steels [J]. Journal of Northeastern University (Natural Science), 2014, 35(5): 686-689.

[3]李鹤飞,张鹏,张哲峰.高强钢断裂韧性与疲劳裂纹扩展评价方法研究进展[J].机械工程学报, 2023, 59(16): 18-31.

Li H F, Zhang P, Zhang Z F. Research progress on evaluation methods of fracture toughness and fatigue crack growth in high-strength steel [J]. Journal of Mechanical Engineering, 2023, 59(16): 18-31.

[4]路洪洲,范体强,方刚,等.热成形钢极限冷弯性能及零件碰撞断裂指数关系研究[J].汽车工艺与材料, 2022(8):41-45.

Lu H Z, Fan T Q, Fang G, et al. Research on the relationship between bending angles of press hardening steel and crash cracking index of hot stamping parts [J]. Automobile Technology & Material, 2022(8): 41-45.

[5]张伟,李春光,林兴明,等. 基于压溃试验增强成形性双相钢吸能特性分析[A]. 中国金属学会,第十二届中国钢铁年会论文集[C].北京:冶金工业出版社,2019. 

Zhang W, Li C G, Lin X M, et al. Analysis of energy absorption characteristics of dual phase steel with high formability based on drop test[A]. The Chinese Society for Metals, Proceedings of the 12th CSM Steel Congress[C]. Beijing: Metallurgical Industry Press, 2019.

[6]王秋雨,孟根巴根,张赛娟,等.汽车用高强钢DP590的材料性能对压溃吸能的影响[J].汽车工艺与材料,2018(12):63-66.

Wang Q Y, Meng G B G, Zhang S J, et al. Effect of material properties of high strength steel DP590 for automobile on crushing energy absorption [J]. Automobile Technology & Material, 2018(12): 63-66.

[7]Michiharu Nakaya, Shinjiro Kanetada, Michitaka Tsunezawa. Hot-dip galvannealed steel sheet of 980 MPa grade having excellent deformability in axial crush [J]. Kobelco Technology Review, 2020(38): 28-31.

[8]Chinzei S, Naito J. Simulation to predict failure in high-strength steel sheet [J]. Kobe Steel Engineering Reports, 2017, 66(2): 76-81.

[9]邱木生,韩赟,滕华湘,等.退火工艺路径对980 MPa级高强钢组织及性能的影响[J].金属热处理, 2023, 48(3):25-31.

Qiu M S, Han Y, Teng H X, et al. Effect of annealing process path on microstructure and properties of 980 MPa grade high-strength steel [J]. Heat Treatment of Metals, 2023, 48(3): 25-31.

[10]艾兵权,邝霜,田秀刚,等. 均热温度对不同成分980 MPa级高强钢组织和性能的影响[J]. 金属热处理,2022,47(9):119-124. 

Ai B Q, Kuang S, Tian X G, et al. Effect of soaking temperature on microstructure and properties of 980 MPa grade high strength steel with different chemical composition [J]. Heat Treatment of Metals, 2022, 47(9): 119-124. 

[11]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

[12]徐勇,段星宇,陈帅峰,等. DP980高强钢静动态拉伸性能及本构模型构建[J]. 塑性工程学报,2022,29(6):125-133. 

Xu Y, Duan X Y, Chen S F, et al. Static and dynamic tensile properties and constitutive model construction of DP980 high-strength steel [J]. Journal of Plasticity Engineering, 2022, 29(6):125-133.

[13]GB/T 15825.4—2008, 金属薄板成形性能与试验方法第4部分:扩孔试验[S].

GB/T 15825.4—2008, Sheet metal formability and test methods—Part 4: Method of hole expanding test [S].

[14]张伟,刘华赛,桑贺,等.不同成分780 MPa级高强双相钢成形性能对比分析[J].塑性工程学报,2024,31(5):171-178.

Zhang W, Liu H S, Sang H, et al. Comparative analysis of forming performance of 780 MPa grade high strength dual phase steel with different components [J]. Journal of Plasticity Engineering, 2024,31(5):171-178.

[15]李倩倩,孙雪丽,吕宝占.基于静态三点弯曲超高强钢硬化行为模型分析[J].塑性工程学报,2024,31(3):100-106.

Li Q Q, Sun X L, Lyu B Z. Model analysis on hardening behavior of ultra high strength steel based on static three-point bending [J]. Journal of Plasticity Engineering, 2024, 31(3): 100-106.

[16]T/CSAE 154—2020, 超高强度汽车钢板极限尖冷弯性能试验方法[S].

T/CSAE 154—2020, Ultra high strength automobile steel plate-Extreme tip bending test[S].

[17]宋北,郭枭,姜英龙,等.夏比冲击试验方法标准现状及影响因素综述[J].压力容器,2022,39(6):58-67.

Song B, Guo X, Jiang Y L, et al. Review of present status of Charpy impact test method standards and influence factors [J]. Pressure Vessel Technology, 2022, 39(6): 58-67.

[18]GB/T 229—2020, 金属材料夏比摆锤冲击试验方法[S].

GB/T 229—2020, Metallic materials—Charpy pendulum impact test method [S].

[19]李一磊,李朋洲,姚迪,等.金属材料裂纹冲击韧性评定方法研究[J].核动力工程,2021,42(5):114-118.

Li Y L, Li P Z, Yao D, et al. Study on crack impact toughness evaluation method for metallic materials[J]. Nuclear Power Engineering, 2021, 42(5): 114-118.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9