[1]韩赟,刘华赛,肖宝亮.我国汽车用钢开发应用现状及发展趋势[J].轧钢, 2024, 41(5):108-120.
Han Y, Liu H S, Xiao B L. Progress in the development and application of automotive steels in China [J]. Steel Rolling, 2024, 41(5): 108-120.
[2]宋峰雨,张朋彦,王平,等. 板条贝氏体中少量铁素体对高强钢强韧性的影响[J]. 东北大学学报(自然科学版), 2014, 35(5):686-689.
Song F Y, Zhang P Y, Wang P, et al. Effects of the small amount of ferrite in bainite laths on the strength and toughness of high strength steels [J]. Journal of Northeastern University (Natural Science), 2014, 35(5): 686-689.
[3]李鹤飞,张鹏,张哲峰.高强钢断裂韧性与疲劳裂纹扩展评价方法研究进展[J].机械工程学报, 2023, 59(16): 18-31.
Li H F, Zhang P, Zhang Z F. Research progress on evaluation methods of fracture toughness and fatigue crack growth in high-strength steel [J]. Journal of Mechanical Engineering, 2023, 59(16): 18-31.
[4]路洪洲,范体强,方刚,等.热成形钢极限冷弯性能及零件碰撞断裂指数关系研究[J].汽车工艺与材料, 2022(8):41-45.
Lu H Z, Fan T Q, Fang G, et al. Research on the relationship between bending angles of press hardening steel and crash cracking index of hot stamping parts [J]. Automobile Technology & Material, 2022(8): 41-45.
[5]张伟,李春光,林兴明,等. 基于压溃试验增强成形性双相钢吸能特性分析[A]. 中国金属学会,第十二届中国钢铁年会论文集[C].北京:冶金工业出版社,2019.
Zhang W, Li C G, Lin X M, et al. Analysis of energy absorption characteristics of dual phase steel with high formability based on drop test[A]. The Chinese Society for Metals, Proceedings of the 12th CSM Steel Congress[C]. Beijing: Metallurgical Industry Press, 2019.
[6]王秋雨,孟根巴根,张赛娟,等.汽车用高强钢DP590的材料性能对压溃吸能的影响[J].汽车工艺与材料,2018(12):63-66.
Wang Q Y, Meng G B G, Zhang S J, et al. Effect of material properties of high strength steel DP590 for automobile on crushing energy absorption [J]. Automobile Technology & Material, 2018(12): 63-66.
[7]Michiharu Nakaya, Shinjiro Kanetada, Michitaka Tsunezawa. Hot-dip galvannealed steel sheet of 980 MPa grade having excellent deformability in axial crush [J]. Kobelco Technology Review, 2020(38): 28-31.
[8]Chinzei S, Naito J. Simulation to predict failure in high-strength steel sheet [J]. Kobe Steel Engineering Reports, 2017, 66(2): 76-81.
[9]邱木生,韩赟,滕华湘,等.退火工艺路径对980 MPa级高强钢组织及性能的影响[J].金属热处理, 2023, 48(3):25-31.
Qiu M S, Han Y, Teng H X, et al. Effect of annealing process path on microstructure and properties of 980 MPa grade high-strength steel [J]. Heat Treatment of Metals, 2023, 48(3): 25-31.
[10]艾兵权,邝霜,田秀刚,等. 均热温度对不同成分980 MPa级高强钢组织和性能的影响[J]. 金属热处理,2022,47(9):119-124.
Ai B Q, Kuang S, Tian X G, et al. Effect of soaking temperature on microstructure and properties of 980 MPa grade high strength steel with different chemical composition [J]. Heat Treatment of Metals, 2022, 47(9): 119-124.
[11]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[12]徐勇,段星宇,陈帅峰,等. DP980高强钢静动态拉伸性能及本构模型构建[J]. 塑性工程学报,2022,29(6):125-133.
Xu Y, Duan X Y, Chen S F, et al. Static and dynamic tensile properties and constitutive model construction of DP980 high-strength steel [J]. Journal of Plasticity Engineering, 2022, 29(6):125-133.
[13]GB/T 15825.4—2008, 金属薄板成形性能与试验方法第4部分:扩孔试验[S].
GB/T 15825.4—2008, Sheet metal formability and test methods—Part 4: Method of hole expanding test [S].
[14]张伟,刘华赛,桑贺,等.不同成分780 MPa级高强双相钢成形性能对比分析[J].塑性工程学报,2024,31(5):171-178.
Zhang W, Liu H S, Sang H, et al. Comparative analysis of forming performance of 780 MPa grade high strength dual phase steel with different components [J]. Journal of Plasticity Engineering, 2024,31(5):171-178.
[15]李倩倩,孙雪丽,吕宝占.基于静态三点弯曲超高强钢硬化行为模型分析[J].塑性工程学报,2024,31(3):100-106.
Li Q Q, Sun X L, Lyu B Z. Model analysis on hardening behavior of ultra high strength steel based on static three-point bending [J]. Journal of Plasticity Engineering, 2024, 31(3): 100-106.
[16]T/CSAE 154—2020, 超高强度汽车钢板极限尖冷弯性能试验方法[S].
T/CSAE 154—2020, Ultra high strength automobile steel plate-Extreme tip bending test[S].
[17]宋北,郭枭,姜英龙,等.夏比冲击试验方法标准现状及影响因素综述[J].压力容器,2022,39(6):58-67.
Song B, Guo X, Jiang Y L, et al. Review of present status of Charpy impact test method standards and influence factors [J]. Pressure Vessel Technology, 2022, 39(6): 58-67.
[18]GB/T 229—2020, 金属材料夏比摆锤冲击试验方法[S].
GB/T 229—2020, Metallic materials—Charpy pendulum impact test method [S].
[19]李一磊,李朋洲,姚迪,等.金属材料裂纹冲击韧性评定方法研究[J].核动力工程,2021,42(5):114-118.
Li Y L, Li P Z, Yao D, et al. Study on crack impact toughness evaluation method for metallic materials[J]. Nuclear Power Engineering, 2021, 42(5): 114-118.
|