[1]朱国森,韩赟,蒋光锐,等. 汽车车身用新型冷轧薄板研发进展[J]. 工程科学学报,2022,44(9):1585-1594.
Zhu G S, Han Y, Jiang G R, et al. Research and development progress of new cold rolled sheet steels of car body [J]. Chinese Journal of Engineering, 2022, 44(9):1585-1594.
[2]唐远寿,司宇,徐正萌,等.超高强度钢在汽车轻量化中的应用及研究进展[J].金属热处理,2023,48(10):247-254.
Tang Y S, Si Y, Xu Z M, et al. Application and research progress of ultra-high strength steel in automotive lightweight [J]. Heat Treatment of Metals, 2023, 48(10): 247-254.
[3]赵征志,陈伟健,高鹏飞,等.先进高强度汽车用钢研究进展及展望[J].钢铁研究学报,2020,32(12):1059-1076.
Zhao Z Z, Chen W J, Gao P F, et al. Progress and perspective of advanced high strength automotive steel [J]. Journal of Iron and Steel Research, 2020, 32(12): 1059-1076.
[4]王彦婷,刘海娜,王凯.基于HyperMesh应变速率对零件材料性能影响分析[J].机械设计与制造,2024(6):242-245.
Wang Y T, Liu H N, Wang K. Effect of strain rate on material properties of carbody parts based on HyperMesh [J]. Machinery Design & Manufacture, 2024(6): 242-245.
[5]靳阳,胡晓,樊华,等.铌元素对DP980钢断裂性能的影响与应用研究[J].锻压技术,2023,48(10):222-234.
Jin Y, Hu X, Fan H, et al. Research on effect and application of niobium element on fracture performance of DP980 steel [J]. Forging & Stamping Technology, 2023, 48(10): 222-234.
[6]董振通,孟宪明,管建军,等.双相钢HC420/780DP动态力学性能及其本构模型研究[J].辽宁石油化工大学学报,2023,43(1):61-66.
Dong Z T, Meng X M, Guan J J, et al. Dynamic mechanical properties and constitutive model of double phase steel HC420/780DP [J]. Journal of Liaoning Petrochemical University, 2023, 43(1): 61-66.
[7]周宇航,张代胜,李翼良,等.汽车金属材料力学性能研究及本构参数的标定[J].现代制造技术与装备,2022,58(10):17-20.
Zhou Y H, Zhang D S, Li Y L, et al. Study on mechanical properties of automotive metal materials and calibration of constitutive parameters [J]. Modern Manufacturing Technology and Equipment, 2022, 58(10): 17-20.
[8]刘海娜,梅运东,刘领兵.应变速率对低合金高强钢性能的影响[J].锻压技术, 2023, 48(6): 253-257.
Liu H N, Mei Y D, Liu L B. Influence of strain rate on properties for low alloy high strength steel [J]. Forging & Stamping Technology, 2023, 48(6): 253-257.
[9]张伟,潘跃,林兴明,等. 应变速率对不同强度双相钢动态力学特性的影响[J]. 塑性工程学报,2022,29(3):166-173.
Zhang W, Pan Y, Lin X M, et al. Effect of strain rate on dynamic mechanical characteristics of dual phase steel with different strengths [J]. Journal of Plasticity Engineering, 2022, 29(3):166-173.
[10]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[11]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统[S].
GB/T 30069.2—2016, Metallic materials—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems [S].
[12]武欣,方正,李国.1300 MPa级热成形钢高应变速率本构模型分析[J].塑性工程学报,2023,30(7):118-126.
Wu X, Fang Z, Li G. Analysis of high strain rate constitutive model of 1300 MPa hot-stamped steel [J]. Journal of Plasticity Engineering, 2023, 30(7): 118-126.
[13]巢成新,于强,李秋.汽车用先进高强钢本构模型与韧性断裂模型研究进展[J].精密成形工程,2024,16(1):77-86.
Chao C X, Yu Q, Li Q. Research progress on constitutive model and ductile fracture model of advanced high strength steel for automotive applications [J]. Journal of Netshape Forming Engineering, 2024,16(1):77-86.
[14]Wei X, Liu Y Y, Zhang X L. Effect of non-linear tension-compression loading reversal on the hardening behavior and initiation fracture strain of a cold-rolled TRIP780 steel sheet[J]. Materials Today Communications, 2022(30): 103076.
[15]张春菊,丁轩,杨明球,等.DP980钢的动态力学性能及本构模型构建[J].钢铁,2022,57(2):157-161.
Zhang C J, Ding X, Yang M Q, et al. Dynamic mechanical properties and constitutive model of DP980 steel [J]. Iron & Steel, 2022, 57(2): 157-161.
[16]罗玉梅,王博,李伟.基于落锤压溃高强双相钢断裂失效模型[J].塑性工程学报,2021,28(9):200-206.
Luo Y M, Wang B, Li W. Fracture failure model of high-strength dual-phase steel based on falling weight collapse [J]. Journal of Plasticity Engineering, 2021, 28(9): 200-206.
[17]SAE-China J0709—2013, 汽车板典型构件的压溃吸能试验方法[S].
SAE-China J0709—2013, Test specifications for typical components of automobile steel sheet [S].
[18]孔玉强,张晓莹,段朋,等.基于GISSMO断裂失效模型的高强钢落锤压溃仿真分析[J].锻压技术,2024,49(3):230-239.
Kong Y Q, Zhang X Y, Duan P, et al. Simulation analysis on drop hammer crush of high-strength steel based on GISSMO fracture failure model [J]. Forging & Stamping Technology, 2024, 49(3):230-239.
|