网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高强度双相钢高应变速率力学性能及模型研究
英文标题:Research on mechanical properties and model of high-strength dual-phase steel under high strain rate
作者:申明斌1 2 
单位:1. 山西铁道职业技术学院 交通运营系 2. 太原科技大学 机械工程学院 
关键词:双相钢 应变速率 动态力学性能 本构模型 落锤压溃 应变强化 
分类号:TG142.15
出版年,卷(期):页码:2025,50(8):292-300
摘要:

 为满足汽车碰撞仿真分析的需求,针对汽车车身常用的800 MPa级高强度双相钢CR440Y/780TDPD+Z,开展高应变速率力学性能和模型研究。基于液压伺服高速拉伸试验机,开展0.001~1000 s-1范围内8种应变速率下的力学性能测试,并采用传统高应变速率本构模型拟合获取外延力学性能曲线;基于5种应变强化模型拟合结果,提出混合应变强化模型,基于各应变速率外延曲线获取应变速率敏感性指数,搭建应变速率强化模型,并与混合应变强化模型耦合,获取应变速率相关的混合强化模型。结果表明:材料的强度和应变速率敏感性指数随着应变速率的升高而增大,而屈强比则基本稳定在0.61;混合应变强化模型外延曲线对极限冷弯的预测精度较高,关键参数的偏差小于3.5%,拟合度达到0.986;应变速率相关的混合强化模型曲线的关键点参数的偏差不超过5%,对力学性能的预测精度较高;对比矩形截面梁落锤压溃试验与仿真结果,应变速率相关的混合强化模型关键参数的偏差最大值为5.22%,优于Johnson-Cook、Cowper-Symonds等模型。

 To meet the requirements of automotive collision simulation analysis, the high strain rate dynamic mechanical properties and model of 800 MPa grade high strength dual-phase steel CR440Y/780TDPD+Z commonly used in automotive bodies were studied, and the mechanical properties at eight strain rates ranging from 0.001 s-1 to 1000 s-1 were tested by the hydraulic servo high-speed tensile testing machine, and the extended mechanical property curves were fitted and obtained by the traditional high strain rate constitutive model. Based on the fitting results of five strain strengthening models, a hybrid strain strengthening model was constructed, and based on the extended curves of each strain rate, the strain rate sensitivity index was obtained to construct strain rate strengthening model, which was coupled with the hybrid strain strengthening model to obtain a strain rate-dependent hybrid strengthening model. The results show that the strength and strain rate sensitivity index of materials increase with the increasing of strain rate, while the yield strength ratio remains basically stable at 0.61. The prediction accuracy of the extended curve for the hybrid strain strengthening model on the ultimate cold bending is higher, the deviation of the key parameters is less than 3.5%, and the fitting degree reaches 0.986. For the strain rate-dependent hybrid strengthening model curve, the deviation of key point parameters is less than 5%, and the prediction accuracy of mechanical properties is higher. Comparing the drop hammer crushing test and simulation results of rectangular cross-section beams, the maximum deviation of the key parameters for the strain rate-dependent hybrid strengthening model is 5.22 %, which is better than Johnson-Cook, Cowper-Symonds and other models.

基金项目:
山西省重点研发计划(202302140601012)
作者简介:
作者简介:申明斌(1991-),男,硕士,讲师 E-mail:shenmingbin1@sxtdzy.cn
参考文献:

 [1]朱国森,韩赟,蒋光锐,等. 汽车车身用新型冷轧薄板研发进展[J]. 工程科学学报,2022,44(9):1585-1594.


Zhu G S, Han Y, Jiang G R, et al. Research and development progress of new cold rolled sheet steels of car body [J]. Chinese Journal of Engineering, 2022, 44(9):1585-1594.

[2]唐远寿,司宇,徐正萌,等.超高强度钢在汽车轻量化中的应用及研究进展[J].金属热处理,2023,48(10):247-254.

Tang Y S, Si Y, Xu Z M, et al. Application and research progress of ultra-high strength steel in automotive lightweight [J]. Heat Treatment of Metals, 2023, 48(10): 247-254.

[3]赵征志,陈伟健,高鹏飞,等.先进高强度汽车用钢研究进展及展望[J].钢铁研究学报,2020,32(12):1059-1076.

Zhao Z Z, Chen W J, Gao P F, et al. Progress and perspective of advanced high strength automotive steel [J]. Journal of Iron and Steel Research, 2020, 32(12): 1059-1076.

[4]王彦婷,刘海娜,王凯.基于HyperMesh应变速率对零件材料性能影响分析[J].机械设计与制造,2024(6):242-245.

Wang Y T, Liu H N, Wang K. Effect of strain rate on material properties of carbody parts based on HyperMesh [J]. Machinery Design & Manufacture, 2024(6): 242-245.

[5]靳阳,胡晓,樊华,等.铌元素对DP980钢断裂性能的影响与应用研究[J].锻压技术,2023,48(10):222-234.

Jin Y, Hu X, Fan H, et al. Research on effect and application of niobium element on fracture performance of DP980 steel [J]. Forging & Stamping Technology, 2023, 48(10): 222-234.

[6]董振通,孟宪明,管建军,等.双相钢HC420/780DP动态力学性能及其本构模型研究[J].辽宁石油化工大学学报,2023,43(1):61-66.

Dong Z T, Meng X M, Guan J J, et al. Dynamic mechanical properties and constitutive model of double phase steel HC420/780DP [J]. Journal of Liaoning Petrochemical University, 2023, 43(1): 61-66.

[7]周宇航,张代胜,李翼良,等.汽车金属材料力学性能研究及本构参数的标定[J].现代制造技术与装备,2022,58(10):17-20.

Zhou Y H, Zhang D S, Li Y L, et al. Study on mechanical properties of automotive metal materials and calibration of constitutive parameters [J]. Modern Manufacturing Technology and Equipment, 2022, 58(10): 17-20.

[8]刘海娜,梅运东,刘领兵.应变速率对低合金高强钢性能的影响[J].锻压技术, 2023, 48(6): 253-257. 

Liu H N, Mei Y D, Liu L B. Influence of strain rate on properties for low alloy high strength steel [J]. Forging & Stamping Technology, 2023, 48(6): 253-257.

[9]张伟,潘跃,林兴明,等. 应变速率对不同强度双相钢动态力学特性的影响[J]. 塑性工程学报,2022,29(3):166-173.

Zhang W, Pan Y, Lin X M, et al. Effect of strain rate on dynamic mechanical characteristics of dual phase steel with different strengths [J]. Journal of Plasticity Engineering, 2022, 29(3):166-173.

[10]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

[11]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统[S].

GB/T 30069.2—2016, Metallic materials—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems [S].

[12]武欣,方正,李国.1300 MPa级热成形钢高应变速率本构模型分析[J].塑性工程学报,2023,30(7):118-126.

Wu X, Fang Z, Li G. Analysis of high strain rate constitutive model of 1300 MPa hot-stamped steel [J]. Journal of Plasticity Engineering, 2023, 30(7): 118-126.

[13]巢成新,于强,李秋.汽车用先进高强钢本构模型与韧性断裂模型研究进展[J].精密成形工程,2024,16(1):77-86.

Chao C X, Yu Q, Li Q. Research progress on constitutive model and ductile fracture model of advanced high strength steel for automotive applications [J]. Journal of Netshape Forming Engineering, 2024,16(1):77-86.

[14]Wei X, Liu Y Y, Zhang X L. Effect of non-linear tension-compression loading reversal on the hardening behavior and initiation fracture strain of a cold-rolled TRIP780 steel sheet[J]. Materials Today Communications, 2022(30): 103076.

[15]张春菊,丁轩,杨明球,等.DP980钢的动态力学性能及本构模型构建[J].钢铁,2022,57(2):157-161.

Zhang C J, Ding X, Yang M Q, et al. Dynamic mechanical properties and constitutive model of DP980 steel [J]. Iron & Steel, 2022, 57(2): 157-161.

[16]罗玉梅,王博,李伟.基于落锤压溃高强双相钢断裂失效模型[J].塑性工程学报,2021,28(9):200-206.

Luo Y M, Wang B, Li W. Fracture failure model of high-strength dual-phase steel based on falling weight collapse [J]. Journal of Plasticity Engineering, 2021, 28(9): 200-206.

[17]SAE-China J0709—2013, 汽车板典型构件的压溃吸能试验方法[S].

SAE-China J0709—2013, Test specifications for typical components of automobile steel sheet [S].

[18]孔玉强,张晓莹,段朋,等.基于GISSMO断裂失效模型的高强钢落锤压溃仿真分析[J].锻压技术,2024,49(3):230-239.

Kong Y Q, Zhang X Y, Duan P, et al. Simulation analysis on drop hammer crush of high-strength steel based on GISSMO fracture failure model [J]. Forging & Stamping Technology, 2024, 49(3):230-239.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9