[1]冯毅,张德良,高翔,等.面向新能源时代的汽车用钢EVI工程技术发展[J].汽车工艺与材料, 2023(9):8-15.
Feng Y, Zhang D L, Gao X, et al. Development of EVI engineering technologies for automotive steel in the new energy era [J]. Automobile Technology & Material, 2023(9): 8-15.
[2]韩赟,刘华赛,肖宝亮.我国汽车用钢开发应用现状及发展趋势[J].轧钢, 2024, 41(5):108-120.
Han Y, Liu H S, Xiao B L. Progress in the development and application of automotive steels in China [J]. Steel Rolling, 2024, 41(5): 108-120.
[3]Mastsumura O, Sakuma Y, Takechi H. Retained austenite in 0.4C-1.5Si-0.8Mn steel sheet intercritical heated and austempered [J]. ISIJ International, 1987, 27(9): 570-579.
[4]Mastsumura O, Sakuma Y, Takechi H. Enhancement of elongation by retained austenite in intercritically annealed 0.4C-1.5Si-0.8Mn[J]. Trans. ISIJ, 1992, 32(9): 1014-1020.
[5]张伟,潘跃,刘华赛,等. 应变速率对增强成形性双相钢性能影响分析[J]. 钢铁,2022,57(4):123-129.
Zhang W, Pan Y, Liu H S, et al. Effect of strain rate on properties of dual phase steel with high formability [J]. Iron & Steel, 2022, 57(4): 123-129.
[6]于沛,夏卿.相变诱导塑性钢高应变速率性能和失效行为分析[J].锻压技术,2023,48(4):256-264.
Yu P, Xia Q. Analysis on high strain rate properties and failure behavior of transformation induced plasticity steel [J]. Forging & Stamping Technology, 2023, 48(4): 256-264.
[7]徐莉,郑崇嵩,侯聚英,等.车用双相高强钢的动态力学性能及本构模型的对比[J].机械工程材料,2023,47(11):74-80.
Xu L, Zheng C S, Hou J Y, et al. Dynamic mechanical properties and constitutive model contrast of dual-phase high strength steel for vehicles [J]. Materials for Mechanical Engineering, 2023, 47(11): 74-80.
[8]唐天宇,黄亮,徐佳辉,等.2219铝合金高应变速率本构模型及其电磁成形应用评估[J].锻压技术,2024,49(5):125-134.
Tang T Y, Huang L, Xu J H, et al. High strain rate constitutive model and electromagnetic forming application evaluation for 2219 aluminum alloy [J]. Forging & Stamping Technology, 2024, 49(5): 125-134.
[9]武欣,方正,李国.1300 MPa级热成形钢高应变速率本构模型分析[J].塑性工程学报,2023,30(7):118-126.
Wu X, Fang Z, Li G. Analysis of high strain rate constitutive model of 1300 MPa hot-stamped steel [J]. Journal of Plasticity Engineering, 2023, 30(7): 118-126.
[10]汪洪波,孙巧妍,贾大伟,等.TRIP980钢的组织性能调控与动态本构模型[J].塑性工程学报,2024,31(7):168-174.
Wang H B, Sun Q Y, Jia D W, et al. Structure and properties control and dynamic constitutive model of TRIP980 steel [J]. Journal of Plasticity Engineering, 2024, 31(7): 168-174.
[11]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature test [S].
[12]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统[S].
GB/T 30069.2—2016, Metallic material—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems[S].
[13]张伟,李春光,韩赟,等.高强双相钢动态力学本构模型对比分析[J].塑性工程学报, 2021, 28(6): 75-82.
Zhang W, Li C G, Han Y, et al. Comparative analysis of dynamic mechanical constitutive model of high strength dual phase steel [J]. Journal of Plasticity Engineering, 2021, 28(6): 75-82.
[14]刘海娜,梅运东,刘领兵.应变速率对低合金高强钢性能的影响[J].锻压技术, 2023, 48(6):253-257.
Liu H N, Mei Y D, Liu L B. Influence of strain rate on properties for low alloy high strength steel [J]. Forging & Stamping Technology, 2023, 48(6): 253-257.
[15]郭会娟,周亚军,张勤.材料应变率模型对汽车B柱侧面碰撞影响分析[J].机械设计与制造,2023(4):158-162.
Guo H J, Zhou Y J, Zhang Q. Influence analysis of the material strain rate model on the automotive B-pillar side impact [J]. Machinery Design & Manufacture, 2023(4): 158-162.
[16]李贺军,田晓光,任小中.冷轧双相钢疲劳断裂行为及组织分析[J].塑性工程学报,2023,30(7):151-158.
Li H J, Tian X G, Ren X Z. Analysis of fatigue fracture behavior and microstructure of cold rolled dual phase steel [J].Journal of Plasticity Engineering,2023,30(7):151-158.
[17]张光莹,定巍,李岩,等.预处理工艺对中锰TRIP钢微观组织和力学性能的影响[J].金属热处理,2023,48(5):259-264.
Zhang G Y, Ding W, Li Y, et al. Effect of pretreatment process on microstructure and mechanical properties of medium manganese TRIP steel [J]. Heat Treatment of Metals, 2023, 48(5): 259-264.
[18]傅萍,王钰珏,何存富,等. 用于DH590钢塑性变形和残余奥氏体表征的多维微磁参量综合评价指标[J]. 实验力学,2024,39(3):261-277.
Fu P, Wang Y J, He C F, et al. Comprehensive indicator of multi-dimensional micromagnetic parameters for evaluation of plastic deformation and residual austenite of DH590 steel [J]. Journal of Experimental Mechanics, 2024, 39(3): 261-277.
|