[1]朱迎五,尹小文,杨鸿智. 根据ECB探讨车身轻量化技术趋势[J]. 汽车工艺师,2024(9):42-46.
Zhu Y W, Yin X W, Yang H Z. Exploring the trend of lightweight vehicle technology based on ECB [J]. Auto Manufacturing Engineer, 2024(9):42-46.
[2]韩赟,刘华赛,肖宝亮.我国汽车用钢开发应用现状及发展趋势[J].轧钢, 2024, 41(5): 108-120.
Han Y, Liu H S, Xiao B L. Progress in the development and application of automotive steels in China [J]. Steel Rolling, 2024, 41(5): 108-120.
[3]武欣,方正,李国.1300 MPa级热成形钢高应变速率本构模型分析[J].塑性工程学报,2023,30(7):118-126.
Wu X, Fang Z, Li G. Analysis of high strain rate constitutive model of 1300 MPa hot-stamped steel [J]. Journal of Plasticity Engineering, 2023, 30(7): 118-126.
[4]王彦婷,刘海娜,王凯.基于HyperMesh应变速率对零件材料性能影响分析[J].机械设计与制造,2024(6):242-245.
Wang Y T, Liu H N, Wang K. Effect of strain rate on material properties of carbody parts based on HyperMesh [J]. Machinery Design & Manufacture, 2024(6): 242-245.
[5]冉谋,李轲,陈敏,等.40Mn钢高温高应变速率塑性本构行为[J].塑性工程学报,2023,30(11):67-72.
Ran M, Li K, Chen M, et al. Plastic constitutive behavior of 40Mn steel at high temperatures and high strain rates [J].Journal of Plasticity Engineering, 2023, 30(11): 67-72.
[6]张伟,潘跃,刘华赛,等. 应变速率对增强成形性双相钢性能影响分析[J]. 钢铁,2022,57(4):123-129.
Zhang W, Pan Y, Liu H S, et al. Effect of strain rate on properties of dual phase steel with high formability [J]. Iron & Steel,2022,57(4):123-129.
[7]于沛,夏卿.相变诱导塑性钢高应变速率性能和失效行为分析[J].锻压技术,2023,48(4):256-264.
Yu P, Xia Q. Analysis on high strain rate properties and failure behavior of transformation induced plasticity steel [J]. Forging & Stamping Technology,2023,48(4):256-264
[8]王伏林,孙兴祚,肖强,等.ZL114A铝合金高应变速率下的本构模型与损伤模型[J].塑性工程学报,2022,29(11):120-126.
Wang F L, Sun X Z, Xiao Q, et al. Constitutive model and damage model of ZL114A aluminum alloy with high strain rate [J]. Journal of Plasticity Engineering, 2022, 29(11): 120-126.
[9]巩俐,贾涓,熊玮,等. 铝含量对IF钢热镀铝锌层组织和性能的影响[J]. 金属热处理,2020,45(7):183-188.
Gong L, Jia J, Xiong W, et al. Effect of aluminum content on microstructure and properties of hot-dip galvanizing coating on IF steel [J]. Heat Treatment of Metals, 2020, 45(7): 183-188.
[10]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[11]董丹阳,刘杨,王磊,等.应变速率对DP780钢动态拉伸变形行为的影响[J].金属学报,2013,49(2):159-166.
Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel [J]. Acta Metallurgica Sinica, 2013, 49(2): 159-166.
[12]吴聪,景财年,林涛,等. 应变速率对热冲压淬火-配分钢显微组织与力学性能的影响[J]. 材料工程,2022,50(10):73-79.
Wu C, Jing C N, Lin T, et al. Effect of strain rate on microstructure and mechanical properties of hot stamping quenching-partitioning steel [J]. Journal of Materials Engineering, 2022, 50(10): 73-79.
[13]GB/T 30069.2—2016,金属材料高应变速率拉伸试第2部分:液压伺服型与其他类型试验系统[S].
GB/T 30069.2—2016, Metallic materials—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems [S].
[14]靳阳,胡晓,樊华,等.铌元素对DP980钢断裂性能的影响与应用研究[J].锻压技术,2023,48(10):222-234.
Jin Y, Hu X, Fan H, et al. Research on effect and application of niobium element on fracture performance of DP980 steel [J]. Forging & Stamping Technology,2023,48(10):222-234.
[15]沈书成,谢盼,刘春雨,等. 应变速率对Fe-20Mn-3Al-3Si钢的力学性能及其微观组织的影响[J]. 电子显微学报,2023,42(2):161-170.
Shen S C, Xie P, Liu C Y, et al. The effect of strain rate on the mechanical properties and microstructure of deformed Fe-20Mn-3Al-3Si steel [J]. Journal of Chinese Electron Microscopy Society, 2023, 42(2): 161-170.
[16]李亚,牛超,连昌伟.切边工艺对高强钢成形性能与断裂模式影响的实验研究[J].锻压技术,2024,49(6):110-115.
Li Y, Niu C, Lian C W. Experimental study on influence of cutting process on formability and fracture mode for high strength steel [J]. Forging & Stamping Technology, 2024, 49(6):110-115.
|