网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
高应变速率对IF钢力学性能及断口形貌的影响
英文标题:Influence of high strain rate on mechanical properties and fracture morphology for IF steel
作者: 杨晨 李伟 
单位:郑州科技学院 机械工程学院 
关键词:无间隙原子钢 应变速率 力学性能 断口形貌 韧性断裂 
分类号:TG142.1+2
出版年,卷(期):页码:2025,50(8):275-282
摘要:

 应变速率对不同材料的力学性能、塑性特征等影响规律差异较大,选取无间隙原子钢DX54D+Z作为研究对象,分析高应变速率对力学性能和组织特征的影响。采用液压伺服高速拉伸试验机,测试0.001~1000 s-1范围内7种应变速率下的IF钢的力学性能;分析试样断口的形貌特征和组织变化。结果表明:DX54D+Z钢表现出明显的应变速率正相关性,材料强度随着应变速率的提升明显增强,屈强比则基本不变,在0.576左右,均匀伸长率和断后伸长率整体呈现先增加后减小的趋势;各试样断口呈现典型的韧性断裂,韧窝深度和密度随着应变速率的增加而增大;试样的裂纹首先萌生于铁素体晶界处,随着距断口距离的增加,裂纹的数量和密度逐渐减少,铁素体的拉伸变形也逐渐减弱。

 The influence laws of strain rate on the mechanical properties and plastic characteristics of different materials are quite different. The interstitial free steel DX54D+Z was selected as the research object to analyze the influence of high strain rate on the mechanical properties and microstructure characteristics. The mechanical properties of IF steel at seven strain rates in the range of 0.001-1000 s-1 were tested by the hydraulic servo high-speed tensile testing machine. The fracture morphology feature and micro-structure of each sample were analyzed. The results show that DX54D+Z steel exhibits a significant positive strain rate correlation. With the increasing of strain rate, the material strength is obviously enhanced, the yield-to-tensile ratio remains basically unchanged at about 0.576, and the uniform elongation and elongation after fracture generally show a trend of first increasing and then decreasing. The fracture of each sample presents typical ductile fracture, and the depth and density of dimples increase with the increasing of strain rate. The cracks of sample first initiate at the ferrite grain boundary, as the distance from the fracture increases, the number and density of cracks gradually decrease, and the tensile deformation of ferrite also weakens gradually.

基金项目:
河南省高等学校重点科研项目(23B460010,21B460020);河南省本科高校青年骨干教师培养计划资助项目(2023GGJS186)
作者简介:
作者简介:杨晨(1983-),女,硕士,副教授 E-mail:854130919@qq.com
参考文献:

 [1]朱迎五,尹小文,杨鸿智. 根据ECB探讨车身轻量化技术趋势[J]. 汽车工艺师,2024(9):42-46. 


Zhu Y W, Yin X W, Yang H Z. Exploring the trend of lightweight vehicle technology based on ECB [J]. Auto Manufacturing Engineer, 2024(9):42-46.

[2]韩赟,刘华赛,肖宝亮.我国汽车用钢开发应用现状及发展趋势[J].轧钢, 2024, 41(5): 108-120.

Han Y, Liu H S, Xiao B L. Progress in the development and application of automotive steels in China [J]. Steel Rolling, 2024, 41(5): 108-120.

[3]武欣,方正,李国.1300 MPa级热成形钢高应变速率本构模型分析[J].塑性工程学报,2023,30(7):118-126.

Wu X, Fang Z, Li G. Analysis of high strain rate constitutive model of 1300 MPa hot-stamped steel [J]. Journal of Plasticity Engineering, 2023, 30(7): 118-126.

[4]王彦婷,刘海娜,王凯.基于HyperMesh应变速率对零件材料性能影响分析[J].机械设计与制造,2024(6):242-245.

Wang Y T, Liu H N, Wang K. Effect of strain rate on material properties of carbody parts based on HyperMesh [J]. Machinery Design & Manufacture, 2024(6): 242-245.

[5]冉谋,李轲,陈敏,等.40Mn钢高温高应变速率塑性本构行为[J].塑性工程学报,2023,30(11):67-72.

Ran M, Li K, Chen M, et al. Plastic constitutive behavior of 40Mn steel at high temperatures and high strain rates [J].Journal of Plasticity Engineering, 2023, 30(11): 67-72.

[6]张伟,潘跃,刘华赛,等. 应变速率对增强成形性双相钢性能影响分析[J]. 钢铁,2022,57(4):123-129.

Zhang W, Pan Y, Liu H S, et al. Effect of strain rate on properties of dual phase steel with high formability [J]. Iron & Steel,2022,57(4):123-129.

[7]于沛,夏卿.相变诱导塑性钢高应变速率性能和失效行为分析[J].锻压技术,2023,48(4):256-264.

Yu P, Xia Q. Analysis on high strain rate properties and failure behavior of transformation induced plasticity steel [J]. Forging & Stamping Technology,2023,48(4):256-264

[8]王伏林,孙兴祚,肖强,等.ZL114A铝合金高应变速率下的本构模型与损伤模型[J].塑性工程学报,2022,29(11):120-126.

Wang F L, Sun X Z, Xiao Q, et al. Constitutive model and damage model of ZL114A aluminum alloy with high strain rate [J]. Journal of Plasticity Engineering, 2022, 29(11): 120-126.

[9]巩俐,贾涓,熊玮,等. 铝含量对IF钢热镀铝锌层组织和性能的影响[J]. 金属热处理,2020,45(7):183-188. 

Gong L, Jia J, Xiong W, et al. Effect of aluminum content on microstructure and properties of hot-dip galvanizing coating on IF steel [J]. Heat Treatment of Metals, 2020, 45(7): 183-188.

[10]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

[11]董丹阳,刘杨,王磊,等.应变速率对DP780钢动态拉伸变形行为的影响[J].金属学报,2013,49(2):159-166.

Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel [J]. Acta Metallurgica Sinica, 2013, 49(2): 159-166.

[12]吴聪,景财年,林涛,等. 应变速率对热冲压淬火-配分钢显微组织与力学性能的影响[J]. 材料工程,2022,50(10):73-79. 

Wu C, Jing C N, Lin T, et al. Effect of strain rate on microstructure and mechanical properties of hot stamping quenching-partitioning steel [J]. Journal of Materials Engineering, 2022, 50(10): 73-79. 

[13]GB/T 30069.2—2016,金属材料高应变速率拉伸试第2部分:液压伺服型与其他类型试验系统[S].

GB/T 30069.2—2016, Metallic materials—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems [S].

[14]靳阳,胡晓,樊华,等.铌元素对DP980钢断裂性能的影响与应用研究[J].锻压技术,2023,48(10):222-234.

Jin Y, Hu X, Fan H, et al. Research on effect and application of niobium element on fracture performance of DP980 steel [J]. Forging & Stamping Technology,2023,48(10):222-234.

[15]沈书成,谢盼,刘春雨,等. 应变速率对Fe-20Mn-3Al-3Si钢的力学性能及其微观组织的影响[J]. 电子显微学报,2023,42(2):161-170.

Shen S C, Xie P, Liu C Y, et al. The effect of strain rate on the mechanical properties and microstructure of deformed Fe-20Mn-3Al-3Si steel [J]. Journal of Chinese Electron Microscopy Society, 2023, 42(2): 161-170.

[16]李亚,牛超,连昌伟.切边工艺对高强钢成形性能与断裂模式影响的实验研究[J].锻压技术,2024,49(6):110-115.

Li Y, Niu C, Lian C W. Experimental study on influence of cutting process on formability and fracture mode for high strength steel [J]. Forging & Stamping Technology, 2024, 49(6):110-115.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9