[1]乔英俊, 赵世佳, 伍晨波, 等. “双碳”目标下我国汽车产业低碳发展战略研究[J]. 中国软科学, 2022(6): 31-40.
Qiao Y J, Zhao S J, Wu C B, et al. Research on low-carbon development strategy of China′s automotive industry with the “Carbon-Peak and Carbon-Neutrality” goal [J]. China Soft Science, 2022(6): 31-40.
[2]刘腾, 朱政强. 第三代汽车用中锰钢研究现状[J]. 兵器材料科学与工程, 2019, 42(6): 102-108.
Liu T, Zhu Z Q. Research status of medium manganese steel for the 3rd gernation automobile sheet [J]. Ordnance Material Science and Engineering, 2019, 42(6): 102-108.
[3]白韶斌, 牛伟强, 肖文涛, 等. 中锰钢的研究进展及未来研究展望[J]. 热加工工艺, 2022, 51(14): 1-9.
Bai S B, Niu W Q, Xiao W T, et al. Research progress and future research prospect of medium Mn steels [J]. Hot Working Technology, 2022, 51(14): 1-9.
[4]韦增磊. 浅述铝合金零部件对汽车轻量化的影响[J]. 中国设备工程, 2022(6): 139-141.
Wei Z L. A brief discussion on the influence of aluminum alloy components on automotive lightweighting [J]. China Plant Engineering, 2022(6): 139-141.
[5]汪淼, 张聪, 胡锋, 等. 相变诱导塑性汽车用钢的发展现状与趋势[J]. 钢铁研究学报, 2016, 28(8): 1-7.
Wang M, Zhang C, Hu F, et al. Current status and trend of TRIP automotive steels [J]. Journal of Iron and Steel Research, 2016, 28(8): 1-7.
[6]张磊峰, 宋仁伯, 赵超, 等. 新型汽车用钢——低密度高强韧钢的研究进展[J]. 材料导报, 2014, 28(19): 111-118, 129.
Zhang L F, Song R B, Zhao C, et al. Research progress of new automotive steel-low-density high strength-toughness steel [J]. Materials Reports, 2014, 28(19): 111-118, 129.
[7]孙毅, 郑沁园, 胡宝佳, 等. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
Sun Y, Zheng Q Y, Hu B J, et al. Mechanism of dynamic strain-induced ferrite transformation in a 3Mn-0.2C medium Mn steel [J]. Acta Metallurgica Sinica, 2022, 58(5): 649-659.
[8]景财年, 刘磊, 林涛, 等. 高强韧中锰钢研究现状及发展趋势[J]. 上海金属, 2023, 45(2): 1-10.
Jing C N, Liu L, Lin T, et al. Research status and development trend of high-strength and high-ductility medium-manganese steel [J]. Shanghai Metals, 2023, 45(2): 1-10.
[9]张宇鹏, 李大赵, 闫志杰, 等. 临界退火工艺对冷轧中锰钢微观组织和力学性能的影响[J]. 材料热处理学报, 2021, 42(5): 72-80.
Zhang Y P, Li D Z, Yan Z J, et al. Effect of intercritical annealing process on microstructure and mechanical properties of cold-rolled medium manganese steel [J]. Transactions of Materials and Heat Treatment, 2021, 42(5): 72-80.
[10]Li Y, Wang R, Wang B, et al. Influence of silicon addition on intercritical annealing process and tensile properties of medium Mn steel[J]. Journal of Materials Science, 2021, 56(2): 1783-1793.
[11]洪陆阔, 艾立群, 孙彩娇, 等. 固态脱碳过程中锰钢微观组织演变及力学性能[J]. 钢铁, 2023, 58(6): 118-125.
Hong L K, Ai L Q, Sun C J, et al. Microstructure evolution and mechanical properties of manganese steel during solid state decarburization [J]. Iron & Steel, 2023, 58(6): 118-125.
[12]孙荣民, 李国阳, 王辉, 等. 逆相变退火处理Fe-Mn-C中锰钢的组织与性能[J]. 钢铁, 2021, 56(6): 82-88.
Sun R M, Li G Y, Wang H, et al. Microstructure and properties of Fe-Mn-C medium-Mn steel processed by ART-annealing [J]. Iron & Steel, 2021, 56(6): 82-88.
[13]樊伟, 冯运莉, 王宇辰, 等. Fe-0.4C-10Mn-4Al系TRIP钢的显微组织与拉伸性能分析[J]. 热加工工艺, 2022, 51(18): 63-67.
Fan W, Feng Y L, Wang Y C, et al. Analysis on microstructure and tensile properties of Fe-0.4C-10Mn-4Al TRIP steel [J]. Hot Working Technology, 2022, 51(18): 63-67.
[14]Pramanik S, Suwas S. Low-density steels: The effect of Al addition on microstructure and properties[J]. JOM, 2014, 66(9): 1868-1876.
[15]Frommeyer G, Brüx U. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight triplex steels[J]. Steel Research International, 2006, 77(9-10): 627-633.
[16]Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622.
[17]Li S, Wen P, Li S, et al. A novel medium-Mn steel with superior mechanical properties and marginal oxidization after press hardening[J]. Acta Materialia, 2021, 205: 116567.
[18]邵成伟, 王俊涛, 赵晓丽, 等. 两相区退火处理含铝中锰钢的组织和力学性能[J]. 钢铁, 2020, 55(5): 87-93.
Shao C W, Wang J T, Zhao X L, et al. Microstructure and mechanical properties of intercritically annealed Al-contain medium Mn steel [J]. Iron & Steel, 2020, 55(5): 87-93.
[19]许立雄. Fe-Mn-Al系轻质低温钢的组织调控及强韧化机理研究[D]. 北京:北京科技大学, 2019.
Xu L X. Study on Microstructure Control and Strengthening-toughening Mechanism of Fe-Mn-Al Light-weight Cryogenic Steel [D]. Beijing: University of Science and Technology Beijing, 2019.
[20]苏宏东, 樊伟, 冯运莉. 退火温度对冷轧Fe-0.4C-10Mn-6Al高强钢组织与力学性能的影响[J]. 金属热处理, 2022, 47(5): 126-131.
Su H D, Fan W, Feng Y L. Effect of annealing temperature on microstructure and mechanical properties of cold-rolled Fe-0.4C-10Mn-6Al high strength steel [J]. Heat Treatment of Metals, 2022, 47(5): 126-131.
[21]徐娟萍, 付豪, 王正, 等. 中锰钢的研究进展与前景[J]. 工程科学学报, 2019, 41(5): 557-572.
Xu J P, Fu H, Wang Z, et al. Research progress and prospect of medium manganese steel [J]. Chinese Journal of Engineering, 2019, 41(5): 557-572.
[22]Cai Z H, Cai B, Ding H, et al. Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content[J]. Materials Science and Engineering: A, 2016, 676: 263-270.
[23]Lee C Y, Jeong J, Han J, et al. Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite[J]. Acta Materialia, 2015, 84: 1-8.
[24]牛伟强, 肖文涛, 白韶斌, 等. Fe-10Mn-2Al-0.4C-0.6V冷轧中锰钢在临界区退火过程中的组织和力学性能演变[J]. 热加工工艺, 2025,54(11): 137-140.
Niu W Q, Xiao W T, Bai S B, et al. Microstructure and mechanical properties evolution of Fe-10Mn-2Al-0.4C-0.6V cold-rolled medium-manganese steel during intercritical annealing [J]. Hot Working Technology, 2025,54(11): 137-140.
[25]李博宇, 柳昆, 冯运莉, 等. 冷轧压下率对Fe-10Mn-6Al-0.4C钢微观组织及力学性能的影响[J]. 钢铁, 2024, 59(4): 159-167.
Li B Y, Liu K, Feng Y L, et al. Effect of cold rolling reduction on microstructure and mechanical properties of Fe-10Mn-6Al-0.4C steel [J]. Iron & Steel, 2024, 59(4): 159-167.
[26]He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357(6355): 1029-1032.
|