网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超大型辊锻机制动器动作时间参数数值模拟及动作配合分析
英文标题:Numerical simulation on action time parameters and analysis on action coordination of brake for super-large roll forging machine
作者:高俊峰1 石一磬1 徐悦鹏1 邵长斌1 袁红霞1 李红1 蔡德鸿2 
单位:1.中国机械总院集团北京机电研究所有限公司 2.贵州安大航空锻造有限责任公司 
关键词:气动干摩擦制动器 动作时间 摩擦制动时间 进、排气节流面积 预压缩量 动作配合 
分类号:TH133.4
出版年,卷(期):页码:2025,50(8):235-241
摘要:

 以某超大型辊锻机气动干摩擦制动器为研究对象,分析其动作时间及影响因素之间的关系,建立数学模型,并采用数值模拟方法得到了动作时间及其影响因素间的关系曲线。结果表明,摩擦制动时间在制动器动作时间中的占比较大,确定了影响制动器动作时间的主要因素有进、排气节流面积和预压缩量,得到了影响制动器动作时间的一般规律,进而对离合器制动器动作配合进行分析,提出了合理的配合方案,为超大型辊锻机气动干摩擦制动器及离合器制动器动作配合控制的设计优化提供了理论基础与依据。

 

 For the pneumatic dry friction brake of a super-large roll forging machine, the relationship between its action time and influencing factors was analyzed, and the mathematical model was established. Then, the relationship curves between the action time and its influencing factors were obtained by the numerical simulation method. The results show that the friction braking time accounts for a large proportion in the action time of brake. The main factors affecting the action time of brake are determined, including intake and exhaust throttling areas and pre-compression amount. The general rule affecting the action time of brake is obtained. Furthermore, the action coordination of clutch and brake is analyzed, and a reasonable coordination scheme is proposed, providing theoretical basis and foundation for the design optimization on the action coordination control of pneumatic dry friction brake and clutch brake for super-large roll forging machines.

基金项目:
作者简介:
作者简介:高俊峰(1987-),男,博士,工程师 E-mail:aresfgjunfeng@163.com
参考文献:

 [1]郭文凤, 刘春梅, 王云, 等. 柔性辊压成形技术及装备发展现状与展望[J]. 现代制造工程, 2024(1): 151-161.


Guo W F, Liu C M, Wang Y, et al. Development status and prospect of flexible roll forming technology and equipment [J]. Modern Manufacturing Engineering, 2024(1): 151-161.

[2]曹树森, 于江. 我国辊锻机的发展现状及展望[J]. 中国重型装备, 2015(1): 18-23.

Cao S S, Yu J. Current status and forecasts of roll forging press development in China [J]. China Heavy Equipment, 2015(1): 18-23.

[3]Chen H, Sun Y. Development and application of reliability test platform for high-speed punch machine clutch brake system[J]. Journal of Mechanical Science and Technology, 2017, 31(1): 53-61.

[4]王骏. 组合式气动干式摩擦离合制动器的制动能力分析[J]. 无锡职业技术学院学报, 2013, 12(4):40-43.

Wang J. Analysis on the braking capacity for combined dry pneumatic friction clutch-brake [J]. Journal of Wuxi Institute of Technology, 2013, 12(4): 40-43.

[5]王胜翔. 曲柄压力机气动摩擦离合器制动过程分析[J]. 重型机械, 2010(5):63-67.

Wang S X. Analysis on pneumatic friction clutch braking of crank press[J]. Heavy Machinery, 2010(5):63-67.

[6]李雪, 赵升吨, 崔敏超, 等. 湿式离合制动器在热模锻压力机上的应用现状分析[J]. 锻压装备与制造技术, 2015, 50(1): 16-21.

Li X, Zhao S D, Cui M C, et al. Application status analysis of wet clutch/brake in hot die forging press [J]. China Metalforming Equipment & Manufacturing Technology, 2015, 50(1): 16-21.

[7]宋荣波. 某热模锻压力机湿式离合制动器液压系统故障分析[J]. 中国重型装备, 2024(3):17-20.

Song R B. Fault analysis for hydraulic system of wet clutch brake of a hot die forging press [J]. China Heavy Equipment, 2024(3):17-20.

[8]柳兴平. 机械压力机湿式离合制动器故障分析及解决措施[J]. 机械工程师, 2013(7):205-206.

Liu X P. Fault analysis and solutions for wet clutch brake of mechanical press[J]. Mechanical Engineer, 2013(7):205-206.

[9]吴旭泽, 王路远, 仲君. 压力机离合制动系统磨损及温升监控系统设计研究[J]. 锻压装备与制造技术, 2020, 55(6):37-40.

Wu X Z, Wang L Y, Zhong J. Design and research on wear and temperature rise monitoring system of press clutch brake system [J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(6):37-40.

[10]田明. 热模锻压力机离合器制动器摩擦过热的控制措施[J].中国金属通报, 2019(8):134-135.

Tian M. Control measures for friction overheating of clutch and brake in hot die forging press[J]. China Metal Bulletin, 2019(8):134-135.

[11]舒小洪, 王晶英, 许圣珺, 等. 机械压力机离合制动器摩擦块智能测控设计技术[J]. 内燃机与配件, 2020(3):68-69.

Shu X H, Wang J Y, Xu S J, et al. Designing technology of intelligent measurement and control for clutch brake friction block of mechanical press[J]. Internal Combustion Engine & Parts, 2020(3):68-69.

[12]周卫兵, 熊四平, 龚金利, 等. 压力机用组合制动器离合器计算方法分析研究[J]. 锻压装备与制造技术, 2022, 57(6):35-38.

Zhou W B, Xiong S P, Gong J L, et al. Analysis and research on calculation method of the combined brake clutch for press[J]. China Metalforming Equipment & Manufacturing Technology, 2022, 57(6): 35-38.

[13]朱霖, 杨峰, 张望. 压力机离合制动器摩擦片磨损量监测系统[J]. 锻压装备与制造技术, 2023, 58(5):84-87.

Zhu L, Yang F, Zhang W. Press clutch brake friction plate wear monitoring system[J]. China Metalforming Equipment & Manufacturing Technology, 2023, 58(5): 84-87.

[14]姚海军, 王同, 张云峰, 等. 机械压力机液压离合/制动器结构、原理与应用[J]. 锻压装备与制造技术, 2024, 59(1):14-17.

Yao H J, Wang T, Zhang Y F, et al. Structure, principle and application of hydraulic clutch/brake of mechanical press[J]. China Metalforming Equipment & Manufacturing Technology, 2024, 59(1):14-17.

[15]王蒙. 大型机械压力机干式离合器及制动器设计要点[J]. 一重技术, 2024(3):9-11.

Wang M. Main design features of dry clutch and brake of large mechanical press[J]. CFHI Technology, 2024(3): 9-11.

[16]端武治, 刘俊, 倪胜伟, 等. 一种机械压力机分体式离合器制动器的控制气路[J]. 锻压装备与制造技术, 2019, 54(2):36-38.

Duan W Z, Liu J, Ni S W, et al. One kind of split clutch brake gas path control for mechanical press [J]. China Metalforming Equipment & Manufacturing Technology, 2019, 54(2):36-38.

[17]高俊峰, 徐悦鹏, 敖茜, 等. 超大型辊锻机气动干式离合器动作时间参数的数值模拟与分析[J]. 锻压技术, 2024, 49(10):166-172.

Gao J F, Xu Y P, Ao Q, et al. Numerical simulation and analysis on action time parameters for pneumatic dry clutch of super-large roll forging machine[J]. Forging & Stamping Technology, 2024, 49(10): 166-172.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9