[1]聂昕,谭天,申丹凤.基于深度学习的汽车梁类件冲压回弹研究[J].中国机械工程,2023,34(7):838-846.
Nie X,Tan T,Shen D F. Research on stamping springback of automobile beam parts based on deep learning [J]. China Mechanical Engineering, 2023, 34(7): 838-846.
[2]宋燕利,刘煜键,方志凌,等.超高强钢构件热冲压成形技术与应用[J].机械工程学报,2023,59(20):154-178.
Song Y L, Liu Y J, Fang Z L, et al. Hot stamping technology and application of ultra-high strength steel components [J]. Journal of Mechanical Engineering, 2023, 59(20): 154-178.
[3]张素伟.煤矿掘进机回转油缸疲劳断裂的改进方法分析[J].矿业装备,2023(9):169-171.
Zhang S W. Analysis of improvement methods for fatigue fracture of rotary oil cylinder in coal mine roadheader [J]. Mining Equipment, 2023(9): 169-171.
[4]姜利,朱灯林.一种伺服压力机主传动机构的设计[J].制造技术与机床,2022(7):96-100.
Jiang L, Zhu D L. Design of main drive mechanism of servo press [J]. Manufacturing Technology & Machine Tool, 2022(7): 96-100.
[5]解明利,刘春旭,张一同.机械压力机连杆动态结构优化设计仿真[J].计算机仿真,2017,34(9):209-213.
Xie M L, Liu C X, Zhang Y T. Rod system dynamic structure optimization design and simulation for the mechanical press [J]. Computer Simulation, 2017, 34(9): 209-213.
[6]韩钊,连子豪,郑恩来,等.含非规则粗糙间隙表面铰链关节的平面柔性多连杆传动系统动态误差与运动副磨损周期行为分析[J].机械工程学报,2022,58(19):115-129.
Han Z, Lian Z H, Zheng E L, et al. Analysis of dynamic error and wear cycle behavior of kinematic pair for planar flexible multi-link transmission system including revolute clearance joints with irregular rough surfaces [J]. Journal of Mechanical Engineering, 2022, 58(19): 115-129.
[7]章永年,陶亚满,蒋书运,等.含角接触球轴承和粗糙间隙表面滑动轴承关节的平面柔性多连杆机构动态误差分析与优化设计[J].机械工程学报,2022,58(1):69-87.
Zhang Y N, Tao Y M, Jiang S Y, et al. Dynamic error analysis and optimization design of planar flexible multi-link mechanism with angular contact ball bearings and revolute clearance sliding bearing joints with rough surfaces [J]. Journal of Mechanical Engineering, 2022, 58(1): 69-87.
[8]骞华楠,陶璟,于随然.高精度压力机连杆机构的误差分析及精度综合[J].上海交通大学学报,2019,53(3):269-275.
Qian H N, Tao J, Yu S R. Error analysis and accuracy synthesis for linkage mechanism of high-precision press [J]. Journal of Shanghai Jiao Tong University, 2019, 53(3): 269-275.
[9]郑恩来,张航,朱跃,等.含间隙超精密压力机柔性多连杆机构动力学建模与仿真[J].农业机械学报,2017,48(1):375-385.
Zheng E L, Zhang H, Zhu Y, et al. Dynamic modeling and simulation of flexible multi-link mechanism including joints with clearance for ultra-precision press [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 375-385.
[10]高峰,郭为忠,宋清玉,等.重型制造装备国内外研究与发展[J].机械工程学报,2010,46(19):92-107.
Gao F, Guo W Z, Song Q Y, et al. Current development of heavy-duty manufacturing equipments [J]. Journal of Mechanical Engineering, 2010, 46(19): 92-107.
[11]Li X, Zhao D, Xie F, et al. Experimental investigations of the dynamic responses of a multi-link mechanism with revolute clearance joints[J]. Advances in Mechanical Engineering, 2021, 13(4): 1-10.
[12]Chen X, Yao E. Dynamic characteristics analysis of multi-link mechanism with clearances considering uncertain parameters[J]. Mechanics Based Design of Structures and Machines, 2024,52(12): 9947-9974.
[13]Jiang S, Lin Y, Liu J, et al. Dynamics optimization research and dynamics accuracy and reliability analysis of a multi-link mechanism with clearances[J]. Machines, 2022, 10(8): 698-720.
[14]孙明道,闫涛,曹丹.35CrMo合金钢螺纹连杆疲劳断裂分析[J].现代制造工程,2023(7):123-129,135.
Sun M D, Yan T, Cao D. Fatigue fracture analysis of 35CrMo alloy steel threaded connecting rod [J]. Modern Manufacturing Engineering, 2023(7): 123-129, 135.
[15]李佳,张子建,赵登辉,等.超声喷丸强化对连杆用42CrMo4钢疲劳性能的影响[J].热加工工艺,2023,52(24):115-120.
Li J, Zhang Z J, Zhao D H, et al. Effect of ultrasonic shot peening on fatigue properties of 42CrMo4 steel for connecting rod [J]. Hot Working Technology, 2023, 52(24): 115-120.
[16]Kong Y S, Abdullah S, Schramm D, et al. Evaluation of energy-based model generated strain signals for carbon steel spring fatigue life assessment[J]. Metals, 2019, 9(2): 213-233.
[17]Xu L, Zhang R, Hao M, et al. A data-driven low-cycle fatigue life prediction model for nickel-based superalloys[J]. Computational Materials Science, 2023, 229: 112434.
[18]孙久洋,张洋洋,王厚权,等.某柴油机连杆运行全过程疲劳分析[J].内燃机与动力装置,2024,41(2):85-89,96.
Sun J Y, Zhang Y Y, Wang H Q, et al. Fatigue analysis of the entire process of connecting rod operation for a diesel engine [J]. Internal Combustion Engine & Powerplant, 2024, 41(2): 85-89, 96.
[19]Jimenez-Martinez M. Manufacturing effects on fatigue strength[J]. Engineering Failure Analysis, 2020, 108: 104339.
[20]石冰,夏小华,辛亮亮.某多连杆后副车架疲劳强度研究[J].上海汽车,2024(2):9-13.
Shi B, Xia X H, Xin L L. Research on fatigue performance of a multi-link rear subframe [J]. Shanghai Auto, 2024(2): 9-13.
[21]章德发,付园宁,庹晓丰,等.轿车前稳定杆连杆断裂原因分析与优化[J].热加工工艺,2019,48(13):172-176.
Zhang D F, Fu Y N, Tuo X F, et al. Fracture reason analysis and optimization of front stabilizer rod of car [J]. Hot Working Technology, 2019, 48(13): 172-176.
[22]许志鹏,刘婵,冯红翠.基于有限元和RBF神经网络的液压支架前连杆疲劳寿命预测[J].机械设计,2024,41(1):110-116.
Xu Z P, Liu C, Feng H C. Fatigue-life prediction of hydraulic support′s front connecting rod based on finite-element analysis and RBF neural network [J]. Journal of Machine Design, 2024, 41(1): 110-116.
[23]刘宏伟,沈世鑫.基于达朗贝尔原理的车桥耦合振动模型仿真[J].计算机仿真,2022,39(7):143-147.
Liu H W, Shen S X. Simulation of vehicle bridge coupling vibration model based on D′Alembert′s principle [J]. Computer Simulation, 2022, 39(7): 143-147.
[24]Evangelista Fernandes P H, Nagel C, Wulf A, et al. Mean stress correction and fatigue failure criteria for hyperelastic adhesive joints[J]. The Journal of Adhesion, 2024, 100(4): 219-242.
[25]苑光明,王全彪,景国玺,等.基于子模型的主轴承螺纹疲劳强度分析方法[J].内燃机工程,2024,45(1):37-46.
Yuan G M, Wang Q B, Jing G X, et al. Fatigue strength analysis method of main bearing thread based on a sub-model [J]. Chinese Internal Combustion Engine Engineering, 2024, 45(1): 37-46.
[26]Wang X, Hou J, Guo H, et al. A Miner′s rule based fatigue life prediction model for combined high and low cycle fatigue considering loading interaction effect[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(12): 4525-4540.
[27]Fuhrlnder M, Schps S. Hermite least squares optimization: A modification of BOBYQA for optimization with limited derivative information[J]. Optimization and Engineering, 2023, 24(4): 2827-2853.
|