网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轧制工艺参数对高强建筑用不锈钢组织和力学性能的影响
英文标题:Influence of rolling process parameters on microstructure and mechanical properties of high-strength architectural stainless steel
作者:耿城1 唐卉1 王赫1 杨清2 
单位:1. 信阳农林学院 风景园林艺术学院 2. 河南科技大学 材料科学与工程学院 
关键词:建筑用不锈钢 轧制温度 轧制变形量 显微组织 力学性能 
分类号:TG146.2
出版年,卷(期):页码:2025,50(8):177-184
摘要:

 研究了轧制温度(625和825 ℃)和轧制变形量(40%、60%和80%)对建筑用00Cr22Ni5Mo3N不锈钢的物相组成、微观组织和力学性能的影响。结果表明,轧制温度为625和825 ℃、3种轧制变形量下的不锈钢均由α铁素体和γ奥氏体组成;当轧制温度从625 ℃升高至825 ℃或轧制变形量从40%增加至80%时,不锈钢中的奥氏体和铁素体的晶粒尺寸均会逐渐增大。轧制变形量从40%增加至80%时,铁素体体积分数增大,不锈钢中亚微米晶和纳米晶的平均晶粒尺寸逐渐增大,纳米晶的体积分数减小,屈服强度和抗拉强度逐渐增大。轧制温度为625 ℃、轧制变形量为80%时的不锈钢具有较高强塑性。

 The influences of rolling temperature (625 and 825 ℃) and rolling deformation amount (40%, 60% and 80%) on the phase composition, microstructure and mechanical properties of architectural stainless steel 00Cr22Ni5Mo3N were studied. The results show that  the stainless steels rolled at 625 and 825 ℃ and subjected to three different rolling deformation amounts are composed of α-ferrite and γ-austenite. When the rolling temperature increases from 625 ℃ to 825 ℃ or the rolling deformation amount increases from 40% to 80%, the grain size of both austenite and ferrite in stainless steel gradually increases. When the rolling deformation amount increases from 40% to 80%, the volume fraction of ferrite increases, the average grain size of submicron and nanocrystals in stainless steel gradually increases, the volume fraction of nanocrystals decreases, and the yield strength and tensile strength graduelly increase. When the rolling temperature is 625 ℃ and the rolling deformation amount is 80%, the stainless steel exhibits higher strength and plasticity.

 
基金项目:
河南省科技计划课题(2023YFG0226);河南省科技厅科技攻关项目(222102320066);河南省科技厅软科学项目(252400411305);河南省哲学社科规划基本项目(2024BYS042);河南省高等教育教学改革研究与实践项目(2024SJGLX0550);国家自然科学基金资助项目(51708448)
作者简介:
作者简介:耿城(1979-),男,硕士,副教授 E-mail:gengcheng79@sina.com 通信作者:唐卉(1990-),女,硕士,讲师 E-mail:5176426791@qq.com
参考文献:

 [1]舒赣平, 吴耀华, 范圣刚, 等.不锈钢在建筑钢结构中的研究与应用[J]. 钢结构, 2024, 39(10):105-110.


Shu G P, Wu Y H, Fan S G, et al. Research and application of stainless steel in building steel structure [J]. Steel Construction, 2024, 39(10):105-110.

[2]陈晓耀, 赵雪.建筑室内设计用不锈钢的组织与性能研究[J]. 太原学院学报(自然科学版), 2024, 42(3): 60-65.

Chen X Y, Zhao X. Study on the microstructure and properties of stainless steel used in architectural interior design [J]. Journal of Taiyuan University (Natural Science Edition), 2024, 42(3): 60-65.

[3]李娜娜, 刘江林, 张威, 等. 轧制态254SMo超级奥氏体不锈钢的热变形行为及本构方程[J]. 稀有金属材料与工程, 2020, 49(8): 2712-2717.

Li N N, Liu J L, Zhang W, et al. Hot deformation behavior and constitutive equation analysis of rolled 254SMo super austenitic stainless steel [J]. Rare Metal Materials and Engineering, 2020, 49(8): 2712-2717.

[4]焦四海, 闫博, 梁晓军, 等. 我国复合钢板轧制技术的发展、现状及展望[J].轧钢, 2024, 41(5): 66-78.

Jiao S H, Yan B, Liang X J, et al. Progress and prospect of steel roll-bonding technology in China [J]. Steel Rolling, 2024, 41 (5): 66-78.

[5]张庆峰, 焦四海. 碳钢不锈钢异质复合轧制过程轧件变形行为研究[J]. 轧钢, 2023, 40(3): 23-27.

Zhang Q F, Jiao S H. Research on deformation behaviors of carbon steel and stainless steel clad plate during rolling [J]. Steel Rolling, 2023, 40 (3): 23-27.

[6]Wang H B, Khan A M, Deng Y, et al. Optimizing LDX 2101 stainless steel: Microstructural insights and mechanical performance under varied rolling reduction[J]. Materials Science & Engineering A, 2024, 894: 146197-146203.

[7]袁刚, 谭国华, 李阳, 等. 形变马氏体对304L奥氏体不锈钢显微组织和力学性能的影响[J].山西冶金, 2022, 45(7):9-11.

Yuan G, Tan G H, Li Y, et al. The influence of deformation martensite on the microstructure and mechanical properties of 304L austenitic stainless steel [J]. Shanxi Metallurgy, 2022, 45(7):9-11.

[8]喇培清, 石玉, 汪科良, 等. 热轧变形量对铝热法制备的2507双相不锈钢组织和力学性能的影响[J]. 兰州理工大学学报, 2020,46(4):1-5.

La P Q, Shi Y, Wang K L, et al. Effect of hot rolling deformation on microstructure and mechanical properties of 2507 duplex stainless steel prepared via the aluminothermic reaction [J]. Journal of Lanzhou University of Technology, 2020, 46 (4): 1-5.

[9]Pesin A, Pustovoytov D, Brevnov K, et al. Enhancing technological plasticity in the production of AISI 420 stainless steel through the use of asymmetric rolling[J]. Journal of Physics: Conference Series, 2024, 2892(1):12009-12015.

[10]杨超, 赵海峰, 乔福振, 等. 2205/Q420/2205蛇形轧制复合变形规律研究[J].太原科技大学学报, 2024, 45(3):229-235.

Yang C, Zhao H F, Qiao F Z, et al. Study on deformation laws of 2205/Q420/2205 in snake rolling [J]. Journal of Taiyuan University of Science and Technology, 2024, 45 (3): 229-235.

[11]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].

[12]艾峥嵘, 于凯, 吴红艳, 等. 超低温轧制304奥氏体不锈钢马氏体逆相变及组织表征[J].精密成形工程, 2023, 15(12): 12-18.

Ai Z R, Yu K, Wu H Y, et al. Martensite reverse transformation and microstructure characterization of 304 austenite stainless steel during cryogenic rolling [J]. Journal of Netshape Forming Engineering, 2023, 15(12): 12-18.

[13]郑月红, 王娇, 魏莹, 等. 过量Fe2O3对铝热法制备微纳结构316L奥氏体不锈钢组织和拉伸性能的影响[J]. 稀有金属材料与工程, 2021, 50(2): 443-450.

Zheng Y H, Wang J, Wei Y, et al. Effect of excess Fe2O3 on microstructure and tensile properties of micro-nano structure 316L austenitic stainless steel prepared by aluminothermic method [J]. Rare Metal Materials and Engineering, 2021, 50 (2): 443-450.

[14]Mao Y Q, Zheng Y H, Shi Y, et al. Effect of rolling deformation on microstructure and mechanical properties of 2205 duplex stainless steel with micro-nano structure[J]. Modern Physics Letters B, 2020, 34(25):12-20.

[15]Fatimah S, Bahanan W, Kang H J, et al. Deep penetration of shear deformation in ferritic stainless steel via differential speed rolling considering contact condition[J]. Applied Sciences, 2024, 15(1):155-162.

[16]于帅, 孙国胜. 轧制温度对304不锈钢组织性能的影响[J]. 轧钢, 2024, 41(4): 66-72.

Yu S, Sun G S. Effect of rolling temperature on microstructure and mechanical property of 304 stainless steel [J]. Steel Rolling, 2024, 41 (4): 66-72.

[17]Lazhar Y, Elamine N, Zohra F B. Effect of rolling deformation on corrosion behaviour of AISI 304L in 3% NaCl solution[J]. Defect and Diffusion Forum, 2021, 6112: 375-384.

[18]王天翔, 高祥明, 赵永顺, 等. 张力作用下304不锈钢箔材的轧制变形模拟[J]. 塑性工程学报, 2021, 28(3):164-170.

Wang T X, Gao X M, Zhao Y S, et al. Simulation on rolling deformation of 304 stainless steel foil under tension [J]. Journal of Plasticity Engineering, 2021, 28(3):164-170.

[19]马云飞, 熊毅, 周甜, 等. 不同变形温度下稀土Ce改性2507超级双相不锈钢的微观组织演变[J]. 材料热处理学报, 2020, 41(7): 64-69.

Ma Y F, Xiong Y, Zhou T, et al. Microstructure evolution of Ce-modified SAF 2507 super duplex stainless steel at different deformation temperatures [J]. Transactions of Materials and Heat Treatment, 2020, 41 (7): 64-69.

[20]Wang X, Ji Y, Niu J, et al. Effect of variable thickness cross rolling on microstructure gradient of 2205 duple stainless steel[J]. Journal of Materials Research and Technology, 2024, 29: 4317-4326.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9