网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
终轧温度对超高氮奥氏体钢组织和性能的影响
英文标题:Influence of final rolling temperature on microstructure and properties of ultra-high nitrogen austenitic steel
作者:张荣华1 尹春韬1 巩延杰2 杨川3 樊玉茹1 张世哲4 
单位:1. 华北理工大学 教育部现代冶金技术重点实验室 2. 邢台钢铁有限责任公司 3. 西安康明斯发动机有限公司 4. 中冶沈堪秦皇岛工程设计研究总院有限公司 
关键词:超高氮奥氏体钢 终轧温度 显微组织 力学性能 断裂机制 
分类号:TG142.1
出版年,卷(期):页码:2025,50(8):146-151
摘要:

 选用不同的终轧温度对超高氮奥氏体不锈钢进行轧制,利用光学显微镜、扫描电子显微镜配合能谱仪表征热轧后的显微组织,通过硬度、拉伸试验测试力学性能,并分析不同终轧温度对试验钢力学性能产生的影响。结果表明,随着终轧温度的降低,晶粒内部弥散分布的(Nb,V)N相逐渐沿着晶界集中分布,试验钢的硬度由420 HV上升至467 HV,屈服强度由1056.6 MPa上升至1295.4 MPa,抗拉强度由1194.1 MPa上升至1341.6 MPa,断后伸长率由22.7%下降至14.1%,拉伸断裂形式由韧性断裂转变为微孔聚集型断裂和解理断裂的混合断裂。

 The ultra-high nitrogen austenitic stainless steel was rolled at different final rolling temperatures. The microstructure after hot rolling was characterized by optical microscope, scanning electron microscope and energy spectrometer. The mechanical properties were tested by hardness and tensile tests, and the infuences of different final rolling temperatures on the mechanical properties of the test steel were analyzed. The results show that as the final rolling temperature decreases, the (Nb,V)N phases dispersed inside the grains gradually concentrates along the grain boundaries. The hardness of the test steel increases from 420 HV to 467 HV, the yield strength increases from 1056.6 MPa to 1295.4 MPa, the tensile strength increases from 1194.1 MPa to 1341.6 MPa, the elongation after fracture decreases from 22.7% to 14.1%, and the tensile fracture mode changes from ductile fracture to a mixed fracture of micropore aggregation fracture and cleavage fracture.

基金项目:
河北省自然科学基金资助项目(E2022209114)
作者简介:
作者简介:张荣华(1980-),女,博士,副教授 E-mail:zrh1980@126.com
参考文献:

 [1]Alexandr S, Liudmila K, Inga S, et al. Nitrogen steels and high-nitrogen steels: Industrial technologies and properties [J]. Steel Research International, 2022, 93(9): 2200160.


[2]Li S, Zhang C, Lu J, et al. A review of progress on high nitrogen austenitic stainless-steel research [J]. Materials Express, 2021, 11(12): 1901-1925.

[3]房菲, 李鑫, 侯彬, 等. 高氮奥氏体不锈钢氮含量影响因素研究及预测 [J]. 上海金属, 2018, 40(3): 64-68.

Fang F, Li X, Hou B, et al. Study on factors influencing nitrogen content in high nitrogen austenitic stainless steel and prediction [J]. Shanghai Metals, 2018, 40(3): 64-68.

[4]章东海, 徐荣川, 郭畅, 等. AOD法冶炼护环用奥氏体不锈钢1Mn18Cr18N [J]. 特殊钢, 2024, 45(2): 46-49.

Zhang D H, Xu R C, Guo C, et al. AOD smelting of austenitic stainless 1Mn18Cr18N protective ring steel [J]. Special Steel, 2024, 45(2): 46-49.

[5]崔大伟, 姜军生, 温效朔, 等. 高氮奥氏体不锈钢金属注射成形喂料的流变行为研究 [J]. 材料工程, 2008(11): 24-27.

Cui D W, Jiang J S, Wen X S, et al. Rheological properties of feedstock for metal injection molding of high nitrogen austenitic stainless steel [J]. Journal of Materials Engineering, 2008(11): 24-27.

[6]崔大伟, 曲选辉, 李科. 高氮低镍奥氏体不锈钢的研究进展 [J].材料导报, 2005(12): 64-67.

Cui D W, Qu X H, Li K. Research progress in high-nitrogen low-nickel austenitic stainless steels [J]. Materials Reports, 2005(12): 64-67.

[7]赵今涛, 孙利芳, 何竹风, 等. 基于深冷轧制备的高强韧高氮奥氏体不锈钢的力学行为 [J/OL]. 金属学报,1-13[2025-04-28]. http://kns.cnki.net/kcms/detail/21.1139.TG.20240702.1350.002.html.

Zhao J T, Sun L F, He Z F, et al. Mechanical behavior of cryogenic rolling processed high nitrogen austenitic stainless steel with high strength and good toughness [J/OL]. Acta Metallurgica Sinica, 1-13[2025-04-28]. http://kns.cnki.net/kcms/detail/21.1139.TG.20240702.1350.002.html.

[8]郑椿, 刘嘉斌, 江来珠, 等. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响 [J]. 金属学报, 2022, 58(2): 193-205.

Zheng C, Liu J B, Jiang L Z, et al. Effect of tensile deformation on microstructure and corrosion resistance of high nitrogen austenitic stainless steels [J]. Acta Metallurgica Sinica, 2022, 58(2): 193-205.

[9]李超毅, 李霄, 牛辉, 等. 经济型高氮奥氏体不锈钢研究进展 [J]. 焊管, 2024, 47(3): 1-7.

Li C Y, Li X, Niu H, et al. Research progress of economical high nitrogen austenitic stainless steel [J]. Welded Pipe and Tube, 2024, 47(3): 1-7.

[10]王星星, 田家豪, 李帅, 等. 高氮钢连接技术研究进展 [J]. 焊接学报, 2023, 44(9): 118-128.

Wang X X, Tian J H, Li S, et al. Research progress on advanced joining technology of high-nitrogen steel[J]. Transactions of the China Welding Institution, 2023, 44(9): 118-128.

[11]刘吉猛, 王书桓, 赵定国, 等. 海工用高氮钢螺栓的制备及其组织性能分析 [J]. 中国冶金, 2024, 34(3): 93-101.

Liu J M, Wang S H, Zhao D G, et al. Preparation and microstructure properties analysis of high nitrogen steel bolts for marine engineering [J]. China Metallurgy, 2024, 34(3): 93-101.

[12]徐国富, 李晓源, 时捷. 热变形对高氮奥氏体不锈钢Mn18Cr18N组织和显微硬度的影响 [J]. 特殊钢, 2013, 34(2): 68-70.

Xu G F, Li X Y, Shi J. Effect of thermal deformation on microhardness and structure of high nitrogen austenite stainless steel Mn18Cr18N [J]. Special Steel, 2013, 34(2): 68-70.

[13]孙雪. 形变及退火工艺对高氮奥氏体不锈钢变形机理的影响 [D]. 南京:南京理工大学, 2023.

Sun X. Effect of Deformation and Annealing Process on Deformation Mechanism of High Nitrogen Austenitic Stainless Steel [D]. Nanjing: Nanjing University of Science and Technology, 2023.

[14]王英虎, 郑淮北, 宋令玺, 等. 无磁钻铤用0Cr19Mn21Ni2N高氮钢的高温塑性变形行为 [J]. 金属热处理, 2022, 47(1): 113-119.

Wang Y H, Zheng H B, Song L X, et al. High temperature plastic deformation behavior of 0Cr19Mn21Ni2N high nitrogen steel for non-magnetic drilling collar [J]. Heat Treatment of Metals, 2022, 47(1): 113-119.

[15]王英虎, 郑淮北, 白青青, 等. Mn18Cr18N高氮奥氏体不锈钢的高温力学性能 [J]. 金属热处理, 2022, 47(1): 172-177.

Wang Y H, Zheng H B, Bai Q Q, et al. High temperature mechanical properties of Mn18Cr18N high nitrogen austenitic stainless steel [J]. Heat Treatment of Metals, 2022, 47(1): 172-177.

[16]杨瑞泽, 翟汝宗, 乔岩欣, 等. 1Cr22Mn16N高氮奥氏体不锈钢的热变形行为 [J]. 钢铁研究学报, 2023, 35(12): 1537-1547.

Yang R Z, Zhai R Z, Qiao Y X, et al. High-temperature deformation behavior of 1Cr22Mn16N high nitrogen austenitic stainless steel [J]. Journal of Iron and Steel Research, 2023, 35(12): 1537-1547.

[17]张荣华, 杨川, 石宁, 等. 高氮奥氏体钢的塑性加工变形特性研究进展 [J]. 材料导报, 2021, 35(11): 11155-11163.

Zhang R H, Yang C, Shi N, et al. Research progress in plastic deformation characteristics of high nitrogen austenitic steel [J]. Materials Reports, 2021, 35(11): 11155-11163.

[18]李晓源, 时捷, 孙挺. 终轧温度对高氮奥氏体钢组织和力学性能的影响 [J]. 中国冶金, 2020, 30(5): 29-34.

Li X Y, Shi J, Sun T. Effects of finish rolling temperature on microstructure and mechanical properties of high nitrogen austenitic steel [J]. China Metallurgy, 2020, 30(5): 29-34.

[19]Kim W D, Kwon Y D, Kang H J. Strengthening of high nitrogen austenitic stainless steel by Nb addition [J]. Materials Characterization, 2024, 209: 113776.

[20]Feng H, Wu M, Li H, et al. Elucidating the dual effect of vanadium microalloying on hot deformation behavior of high nitrogen martensitic stainless steel [J]. Journal of Materials Research and Technology, 2024, 29: 4902-4916.

[21]Qian D, Sun M, Wang F, et al. Dynamic recrystallization behaviors and cracking mechanism for the hot deformation of new-generation high nitrogen bearing steel [J]. Materials & Design, 2024, 241: 112891.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9