网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Cu元素对背压挤压成形Al-Si合金涡旋盘微观组织及性能的影响
英文标题:Influence of Cu element on microstructure and properties of back-pressure extruded Al-Si alloy scroll
作者:王雷远1 杨阳2 杜亚都2 
单位:1. 日照德信机械制造有限公司 2. 山东商业职业技术学院 先进材料应用研究所 
关键词:涡旋盘 合金化强化 背压挤压成形 微观组织 抗拉强度 
分类号:TG146.21
出版年,卷(期):页码:2025,50(8):139-145
摘要:

 通过系统调节Cu含量,探究不同Cu含量对Al-Si合金微观组织演变和力学性能的影响规律,并设计制备3种新的高Cu含量Al-Si-Cu合金,并将制备的新合金材料的性能与商用4032铝合金进行对比分析。结果表明:随着Cu含量的增大,Al-Si-Cu合金的抗拉强度呈先升高再下降的趋势,当Cu含量为5%时,抗拉强度最大,为477.2 MPa;而合金硬度随着Cu含量的增大逐渐增大。相较于商用4032铝合金,Cu含量为5%时合金的抗拉强度与硬度分别提升了49%和16%。微观组织表征揭示了Cu元素通过固溶强化(溶解于α-Al基体)与沉淀强化(促进合金相的弥散分布)的双重作用机制,协同提升了材料性能。研制开发的新型Al-Si-Cu合金能够提升背压挤压成形涡旋盘的核心性能,为满足新能源汽车电驱动系统对涡旋盘日益严苛的性能要求提供了更优的材料解决方案。

 Through systematically adjusting the Cu content, the influence laws of varying Cu contents on the microstructural evolution and mechanical properties of Al-Si alloys were investigated. Three novel high-Cu content Al-Si-Cu alloys were designed and prepared. The properties of the newly prepared alloys were compared and analyzed with those of the commercial 4032 aluminum alloy. The results indicate that the tensile strength of the Al-Si-Cu alloys presents a trend of first increasing and then decreasing with the increasing of Cu content. When the Cu content is 5%, the tensile strength reaches the maximum value of 477.2 MPa, while the hardness of the alloys gradually increases with the increasing of Cu content. Compared to the commercial 4032 aluminum alloy, the tensile strength and hardness of the alloy with 5% Cu content are increased by 49% and 16%, respectively. Microstructural characterization reveals that the Cu element synergistically improves the material properties through a dual mechanism of solution strengthening (dissolving in the α-Al matrix) and precipitation strengthening (promoting the dispersed distribution of alloy phases). The newly developed Al-Si-Cu alloys can enhance the core performance of back-pressure extruded scroll, providing a better material solution to meet the increasingly stringent performance requirements of scroll in the electric drive systems of new energy vehicles.

基金项目:
山东省科技型中小企业提升工程项目(2021TS-GC1346)
作者简介:
作者简介:王雷远(1969-),男,学士,高级工程师 E-mail:wlyjm-2002@163.com 通信作者:杨阳(1971-),男,工学博士,副教授 E-mail:gdyang@sdu.edu.cn
参考文献:

 [1]Vashisht S, Rakshit D. Recent advances and sustainable solutions in automobile air conditioning systems [J]. Journal of Cleaner Production, 2021, 329: 129754. 


[2]Tiwari R N, Reggio F, Renuke A, et al. Performance investigation of a bladeless air compressor[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(9): 091008.

[3]田野,薛克敏,孙大智,等.涡旋盘背压成形工艺研究[J].机械工程学报,2015,51(16): 143-149.

Tian Y, Xue K M, Sun D Z, et al. Study on backpressure forming process of scroll [J]. Journal of Mechanical Engineering, 2015, 51(16): 143-149.

[4]Guo Y, Wang Y F, Zhao S D. Experimental investigation and optimization of the semisolid multicavity squeeze casting process for wrought aluminum alloy scroll [J]. Materials, 2020, 13(22): 5278.

[5]Niu G D, Jeff W, Li  J P, et al. The formation mechanism of the chill fine-grain layer with high supersaturation and its influence on the mechanical properties of die casting Al-7Si-0.5Mg alloy [J]. Materials Science and Engineering: A, 2022, 833: 1-7.

[6]Kumar D, Singh P K. Microstructural and mechanical characterization of Al-4032 based metal matrix composites [J]. Materials Today: Proceedings, 2019, 18: 2563-2572.

[7]张文帅, 王建军, 王帅. 变截面涡旋盘薄壁齿高速铣削仿真及实验研究 [J]. 精密制造与自动化,2021(4): 10-14.

Zhang W S, Wang J J, Wang S. Simulation and experimental research on high-speed milling of thin-walled teeth in variable cross-section scroll discs [J]. Precision Manufacturing & Automation, 2021(4): 10-14.

[8]时迎宾, 薛世博, 段园培, 等. 新能源汽车4032铝合金涡旋件背压成形数值模拟与实验研究 [J]. 精密成形工程,2020, 12(5): 88-92. 

Shi Y B, Xue S B, Duan Y P, et al. Numerical simulation and experimental study on back pressure forming of new energy vehicle 4032 aluminum alloy scroll [J]. Journal of Netshape Forming Engineering, 2020, 12(5): 88-92.

[9]吴进, 王成勇, 何大宏, 等. 背压加载方式对轻量化压缩机涡旋盘成形质量的影响 [J]. 塑性工程学报,2021, 28(1): 77-84.

Wu J, Wang C Y, He D H, et al. Influence of back pressure loading mode on forming quality of lightweight compressor scroll [J]. Journal of Plasticity Engineering, 2021, 28(1): 77-84.

[10]王永飞,吴远刚,刘晓明,等. 氢循环泵用涡旋盘成形工艺的研究现状 [J]. 精密成形工程,2022, 14(7): 19-27. 

Wang Y F, Wu Y G, Liu X M, et al. Research status of scroll forming process for hydrogen circulating pump [J]. Journal of Netshape Forming Engineering, 2022, 14(7): 19-27.

[11]Zhao Q, Liu X F, Zhao D G, et al. Effects of trace Mn addition on the elevated temperature tensile strength and microstructure of a low-iron Al-Si piston alloy [J]. Materials Letters, 2008, 62(16): 2146-2149.

[12]Kumar D, Singh P K. Investigation of wear characteristics of Al-4032 based metal matrix composite using Taguchi′s optimization approach [J]. Materials Research Express, 2019, 6(10): 106543.

[13]Saini P, Singh P K. Microstructural, mechanical and machining studies of Al-4032 alloy based hybrid composite [J]. Silicon, 2023, 15(2): 943-962.

[14]陈澜. 4032 铝合金涡旋盘锻件组织性能研究 [D]. 哈尔滨:哈尔滨工业大学,2011.

Chen L. Research on Microstructure and Mechanical Property of 4032 Aluminum Alloy Scroll [D]. Harbin: Harbin Institute of Technology, 2011.

[15]陈天宇,章宇豪,王芝秀,等.Zn含量对Al-Mg-Si-Cu合金拉伸性能及晶间腐蚀敏感性的影响[J].稀有金属,2023,47(4):484-492.

Chen T Y,Zhang Y H,Wang Z X,et al. Tensile properties and intergranular corrosion sensitivity of Al-Mg-Si-Cu alloy with different Zn contents[J]. Chinese Journal of Rare Metals, 2023, 47(4): 484-492.

[16]Zhou P, Wang D, Nagaumi Hiromi, et al. Microstructural evolution and mechanical properties of Al-Si-Mg-Cu cast alloys with different Cu contents [J]. Metals, 2023, 13(1): 98.

[17]Sezonenko Andrii Yu, Petryshyn Mykola M, Kolesnichenko Andrii A, et al. Features of structure and properties of Al-Si-Cu alloy produced by pressure casting [J]. Results in Materials, 2024, 21: 100539.

[18]Okayasu Mitsuhiro, Ohkura Yasuhiro, Takeuchi Shinji, et al. A study of the mechanical properties of an Al-Si-Cu alloy (ADC12) produced by various casting processes [J]. Materials Science and Engineering: A, 2012, 543: 185-192.

[19]钱钊, 刘相法, 魏作山,等. 挤压铸造BH122活塞合金的显微组织与力学性能 [J]. 特种铸造及有色合金,2008, 28(1): 40-43. 

Qian Z, Liu X F, Wei Z S, et al. Microstructure and mechanical properties of BH22 piston alloy in squeezing casting [J]. Special Casting & Nonferrous Alloys, 2008, 28(1): 40-43.

[20]钱钊. 高强耐热Al-Si活塞合金的研究 [D]. 济南:山东大学,2009.

Qian Z. Study on High Strength Heat-resistant Al-Si Piston Alloys [D]. Jinan: Shandong University, 2009.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9