网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝合金等通道转角分流宽展挤压微观组织有限元分析
英文标题:Finite element analysis on microstructure in portholes-equal channel angular pressing spread extrusion for aluminium alloy
作者:石磊1 2 卢志文1 李永兵3 杨培源1 柳翊1 李小龙1 陈学文4 
单位:1. 洛阳理工学院 材料科学与工程学院 2.西北工业大学 材料学院 3.北京机科国创轻量化科学研究院有限公司 4.河南科技大学 材料科学与工程学院 
关键词:6005A铝合金 等通道转角分流宽展挤压 热挤压 再结晶 微观组织 
分类号:TG376.2
出版年,卷(期):页码:2025,50(8):131-138
摘要:

 为了掌握等通道转角分流宽展挤压铝合金的微观组织演变规律,以6005A铝合金为研究对象,以基于YADA再结晶方程的数学模型为基础,采用有限元分析和实验研究相结合的方法,对微观变形特征进行了研究。通过金相分析验证了模型的准确性,得到挤压过程中发生再结晶的体积分数、再结晶的晶粒尺寸及最终晶粒尺寸。研究结果揭示了6005A铝合金在热挤压过程中发生的晶粒细化现象,确定了特征点的演变规律,成功挤压了再结晶体积分数为100%、晶粒尺寸为15.75~19.92 μm的板材。为实现铝合金等通道转角分流宽展挤压的微观预测奠定了基础。

 In order to understand the microstructure evolution law of portholes-equal channel angular pressing spread extrusion aluminum alloy, for 6005A aluminum alloy, based on the mathematical model of recrystallization equation YADA, the micro deformation characteristics were studied by combining finite element analysis and experimental research. The accuracy of the model was verified by metallographic analysis, and the recrystallization volume fraction, recrystallized grain size and final grain size during the extrusion process  were obtained.The research results reveal the grain refinement phenomenon of 6005A aluminum alloy during the hot extrusion process and determine the evolution law of characteristic points. Finally, the sheet with the recrystallization volume fraction of 100% and the grain size of 15.75-19.92 μm are extruded sucessfully, which lays the foundation for the microstructural prediction of portholes-equal channel congular pressing spread extrusion.

基金项目:
河南省科技攻关项目(242102230066,242102231017,242102230047)
作者简介:
作者简介:石磊(1980-),男,博士,副教授 E-mail:shilei207207@163.com 通信作者:卢志文(1966-),男,博士,教授 E-mail:1796879656@qq.com
参考文献:

 [1]石磊. 铝合金等通道转角分流大宽展挤压成形机理研究[D]. 西安:西北工业大学, 2015.


Shi L. Investigation on Deformation Mechanism of Aluminum Alloy during Porthole ECAP Spread Extrusion[D]. Xi′an: Northwestern Polytechnical University, 2015.

[2]吴新民. 我国高速列车技术的科技攻关[J]. 机车电传动, 2024(3): 6-15.

Wu X M. Scientific and technological research in China′s high-speed train technology[J]. Electric Drive for Locomotives, 2024(3): 6-15.

[3]文超, 朱正锋, 王群, 等. 7×××系超高强铝合金在我国轨道交通车辆的研究应用现状与展望[J]. 金属热处理, 2024, 49(3): 302-312.

Wen C, Zhu Z F, Wang Q, et al. Research application status and prospect of 7××× series ultra-high strength aluminum alloy in rail transit vehicles in China [J]. Heat Treatment of Metals, 2024, 49(3): 302-312.

[4]金文福, 邓鑫, 周金旭, 等. 高速列车底板型材激光-熔化极惰性气体保护复合焊接试验[J]. 装备机械, 2024(1): 67-70.

Jin W F, Deng X, Zhou J X, et al. Laser-MIG composite welding test of bottom plate profile of high-speed train [J]. The Magazine on Equipment Machinery, 2024(1): 67-70.

[5]Shi L, Yang H, Guo L G, et al. Large-scale manufacturing of aluminum alloy plate extruded from subsize billet by new porthole-equal channel angular processing technique [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(5): 1521-1530.

[6]Wang X R, Zhu T, Zhang J K, et al. Effect of material failure criteria on collision behavior of metro vehicle end structures[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023, 237(4): 419-428.

[7]王琳. 2219铝合金薄壁筒形件反挤压成形工艺仿真与试验研究[D]. 长沙:中南大学, 2023.

Wang L. Simulation and Experimental Research on Backward Extrusion Process of 2219 Aluminum Alloy Thin-walled Tube Parts[D]. Changsha: Central South University, 2023.

[8]李世康. 6063铝合金分流模挤压焊合组织及力学性能研究[D]. 长沙:湖南大学, 2019.

Li S K. Study on the Welding Microstructure and Mechanical Property of 6063 Aluminum Alloy Porthole Die Extrusion[D]. Changsha: Hunan University, 2019.

[9]陈刚. 超高强铝合金Al-12Zn-2.4Mg-1.2Cu热变形特性及应用研究[D]. 太原:中北大学, 2016.

Chen G. Study on Thermal Deformation Characteristics and Application of the Al-12Zn-2.4Mg-1.2Cu Ultra High Strength Aluminum Alloy[D]. Taiyuan: North University of China, 2016.

[10]石磊, 杨合, 郭良刚, 等. 6005A铝合金压缩变形组织分析及动态再结晶模型[J]. 塑性工程学报, 2014, 21(2): 65-70.

Shi L, Yang H, Guo L G, et al. Dynamic recrystallization model of 6005A aluminum alloy at elevated temperature based on microstructure analysis of hot compression [J]. Journal of Plasticity Engineering, 2014, 21(2): 65-70.

[11]李健, 何涛, 贾东昇, 等. 等通道转角挤压对真空吸铸成形纯铝力学性能及微观组织的影响[J]. 锻压技术, 2023, 48(11): 60-66.

Li J, He T, Jia D S, et al. Influence of equal channel angular pressing on mechanical properties and microstructure for pure aluminum formed by vacuum suction casting [J]. Forging & Stamping Technology, 2023, 48(11): 60-66.

[12]张永皞, 范啟超, 孙明艳, 等.等径角挤压(ECAP)技术在NiTi基形状记忆合金中的研究进展[J]. 稀有金属, 2023, 47(9): 1263-1273.

Zhang Y H, Fan Q C, Sun M Y, et al. Development of equal channel angular pressing in NiTi-based shape memory alloy[J]. Chinese Journal of Rare Metals, 2023, 47(9): 1262-1273.

[13]Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing [J]. Acta Materialia, 2004, 52(15): 4589-4599.

[14]Shi L, Yang H, Guo L G, et al. Constitutive deformation modeling in high temperature forging of a 6005A aluminum alloy[J]. Materials and Design, 2014, 54: 576-581.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9