[1]石磊. 铝合金等通道转角分流大宽展挤压成形机理研究[D]. 西安:西北工业大学, 2015.
Shi L. Investigation on Deformation Mechanism of Aluminum Alloy during Porthole ECAP Spread Extrusion[D]. Xi′an: Northwestern Polytechnical University, 2015.
[2]吴新民. 我国高速列车技术的科技攻关[J]. 机车电传动, 2024(3): 6-15.
Wu X M. Scientific and technological research in China′s high-speed train technology[J]. Electric Drive for Locomotives, 2024(3): 6-15.
[3]文超, 朱正锋, 王群, 等. 7×××系超高强铝合金在我国轨道交通车辆的研究应用现状与展望[J]. 金属热处理, 2024, 49(3): 302-312.
Wen C, Zhu Z F, Wang Q, et al. Research application status and prospect of 7××× series ultra-high strength aluminum alloy in rail transit vehicles in China [J]. Heat Treatment of Metals, 2024, 49(3): 302-312.
[4]金文福, 邓鑫, 周金旭, 等. 高速列车底板型材激光-熔化极惰性气体保护复合焊接试验[J]. 装备机械, 2024(1): 67-70.
Jin W F, Deng X, Zhou J X, et al. Laser-MIG composite welding test of bottom plate profile of high-speed train [J]. The Magazine on Equipment Machinery, 2024(1): 67-70.
[5]Shi L, Yang H, Guo L G, et al. Large-scale manufacturing of aluminum alloy plate extruded from subsize billet by new porthole-equal channel angular processing technique [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(5): 1521-1530.
[6]Wang X R, Zhu T, Zhang J K, et al. Effect of material failure criteria on collision behavior of metro vehicle end structures[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023, 237(4): 419-428.
[7]王琳. 2219铝合金薄壁筒形件反挤压成形工艺仿真与试验研究[D]. 长沙:中南大学, 2023.
Wang L. Simulation and Experimental Research on Backward Extrusion Process of 2219 Aluminum Alloy Thin-walled Tube Parts[D]. Changsha: Central South University, 2023.
[8]李世康. 6063铝合金分流模挤压焊合组织及力学性能研究[D]. 长沙:湖南大学, 2019.
Li S K. Study on the Welding Microstructure and Mechanical Property of 6063 Aluminum Alloy Porthole Die Extrusion[D]. Changsha: Hunan University, 2019.
[9]陈刚. 超高强铝合金Al-12Zn-2.4Mg-1.2Cu热变形特性及应用研究[D]. 太原:中北大学, 2016.
Chen G. Study on Thermal Deformation Characteristics and Application of the Al-12Zn-2.4Mg-1.2Cu Ultra High Strength Aluminum Alloy[D]. Taiyuan: North University of China, 2016.
[10]石磊, 杨合, 郭良刚, 等. 6005A铝合金压缩变形组织分析及动态再结晶模型[J]. 塑性工程学报, 2014, 21(2): 65-70.
Shi L, Yang H, Guo L G, et al. Dynamic recrystallization model of 6005A aluminum alloy at elevated temperature based on microstructure analysis of hot compression [J]. Journal of Plasticity Engineering, 2014, 21(2): 65-70.
[11]李健, 何涛, 贾东昇, 等. 等通道转角挤压对真空吸铸成形纯铝力学性能及微观组织的影响[J]. 锻压技术, 2023, 48(11): 60-66.
Li J, He T, Jia D S, et al. Influence of equal channel angular pressing on mechanical properties and microstructure for pure aluminum formed by vacuum suction casting [J]. Forging & Stamping Technology, 2023, 48(11): 60-66.
[12]张永皞, 范啟超, 孙明艳, 等.等径角挤压(ECAP)技术在NiTi基形状记忆合金中的研究进展[J]. 稀有金属, 2023, 47(9): 1263-1273.
Zhang Y H, Fan Q C, Sun M Y, et al. Development of equal channel angular pressing in NiTi-based shape memory alloy[J]. Chinese Journal of Rare Metals, 2023, 47(9): 1262-1273.
[13]Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing [J]. Acta Materialia, 2004, 52(15): 4589-4599.
[14]Shi L, Yang H, Guo L G, et al. Constitutive deformation modeling in high temperature forging of a 6005A aluminum alloy[J]. Materials and Design, 2014, 54: 576-581.
|