[1]刘纲,干勇,刘崇,等. 基于22MnB5钢的铌钒微合金化热成形钢的研发[J]. 金属热处理,2021,46(1):109-113.
Liu G, Gan Y, Liu C, et al. Development of Nb-V microalloyed hot forming steel based on 22MnB5 [J]. Heat Treatment of Metals, 2021, 46(1): 109-113.
[2]刘安民,冯毅,赵岩,等. 铌钒微合金化对22MnB5热成形钢显微组织与性能的影响[J]. 机械材料,2019,43(5):34-37.
Liu A M, Feng Y, Zhao Y, et al. Effect of niobium and vanadium micro-alloying on microstructure and property of 22MnB5 hot press forming steel [J]. Material for Mechanical Engineering, 2019, 43(5): 34-37.
[3]马鸣图,路洪洲,孙智富,等. 22MnB5钢三种热冲压成形件的冷弯性能[J]. 机械材料,2016,40(7):7-12.
Ma M T, Lu H Z, Sun Z F, et al. Cold bending properties of three kinds of 22MnB5 steel hot stamping parts[J]. Material for Mechanical Engineering, 2016, 40(7): 7-12.
[4]路洪洲,范体强,方刚,等. 热成形钢极限冷弯性能及零件碰撞断裂指数关系研究[J]. 汽车工艺与材料,2022(8):41-45.
Lu H Z, Fan T Q, Fang G, et al. Research on the relationship between bending angles of press hardening steel and crash cracking index of hot stamping parts [J]. Automobile Technology & Material, 2022(8): 41-45.
[5]Cheong K, Omer K, Butcher C, et al. Evaluation of the VDA 238-100 tight radius bending test using digital image correlation strain measurement[J]. IOP Conf. Series: Journal of Physics: Conf. Series, 2017, 896: 012075.
[6]VDA 238-100—2017, Plate bending test for metallic materials[S].
[7]易红亮,常智渊,才贺龙,等. 热冲压成形钢的强度与塑性及断裂应变[J]. 金属学报,2020,56(4):429-443.
Yi H L, Chang Z Y, Cai H L, et al. Strength, ductility and fracture strain of press-hardening steels[J]. Acta Metallurgica Sinica, 2020, 56(4): 429-443.
[8]刘钊源. 热冲压钢Al-Si镀层组织演化与断裂应变性能研究[D]. 沈阳:东北大学,2020.
Liu Z Y. Research on Microstructure Evolution and Fracture Strain Property of Al-Si Coatings on Hot Stamped Steel[D]. Shenyang: Northeastern University, 2020.
[9]Wagner L, Larour P, Dolzer D, et al. Experimental issues in the instrumented 3 point bending VDA 238-100 test[J]. IOP Conference Series: Materials Science and Engineering, 2020, 967(1): 012079.
[10]金学军,龚熠,韩先洪,等. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报,2020,56(4):411-428.
Jin X J, Gong Y, Han X H, et al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels[J]. Acta Metallurgica Sinica, 2020, 56(4): 429-443.
[11]Arola A M, Kaijalainen A, Kesti V, et al. Digital image correlation and optical strain measuring in bendability assessment of ultra-high strength structural steels[J]. Procedia Manufacturing, 2019, 29: 398-405.
[12]Cheong K, Butcher C, Dykeman J. The influence of the through-thickness strain gradients on the fracture characterization of advanced high strength steels[J]. SAE International Journal of Materials and Manufacturing, 2018, 11(4): 541-552.
[13]Noder J, Abedini A, Butcher C. Evaluation of the VDA 238-100 tight radius bend test for plane strain fracture characterization of automotive sheet metals[J]. Experimental Mechanics, 2020, 60: 787-800.
[14]Sadhinoch M, Kampczyk M, Mulder R. Statistics of fracture in 3-point bending[J]. IOP Conference Series: Materials Science and Engineering, 2019, 651(1): 012075.
[15]Dietsch P, Tihay K, Bui-Van A, et al. Methodology to assess fracture during crash simulation: Fracture strain criteria and their calibration[J]. Metallurgical Research & Technology, 2017, 114(6): 607.
[16]Noder J, Dykeman J, Butcher C. New methodologies for fracture detection of automotive steels in tight radius bending: Application to the VDA 238-100 V-bend test[J]. Experimental Mechanics, 2021, 61: 367-394.
[17]GB/T 232—2024,金属材料弯曲试验方法[S].
GB/T 232—2024, Metallic materials—Bend testing method [S].
|