网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于FEA的TC4钛合金激光/超声辅助V型弯曲工艺
英文标题:Laser/ultrasonic assisted V-type bending process of TC4 titanium alloy based on FEA
作者:冯卓1 王凯锋2 才耀淇1 李跃鹏2 高铁军1 
单位:1. 沈阳航空航天大学 航空宇航学院 2. 成都飞机工业(集团)有限公司 
关键词:TC4钛合金 弯曲力 激光 超声 辅助弯曲 回弹 
分类号:TG302
出版年,卷(期):页码:2025,50(8):64-71
摘要:

 针对钛合金室温下成形难度大、成形精度低等问题,提出在弯曲过程中施加激光/超声复合能场的辅助弯曲工艺。基于ANSYS软件对TC4钛合金普通V型弯曲、激光辅助V型弯曲、激光/超声辅助V型弯曲3种工艺进行有限元分析,通过分析弯曲件几何形状、回弹角度和等效应变等结果,确定了弯曲力、激光和超声振动对钛合金弯曲工艺的影响规律。研究结果表明,激光/超声辅助V型弯曲过程中,利用激光产生局部高温和超声振动产生的表面效应与体积效应,以及激光/超声振动能量的复合效应,较好地抑制了钛合金弯曲件的回弹,进一步提高了钛合金弯曲件质量,并且该方法具有工艺简单、可实现性强的优点。

 

 Aiming at the problems of significant forming difficulty and low forming accuracy of titanium alloy at room temperature, an auxiliary bending process with laser/ultrasonic composite energy field during bending process was proposed. Based on the ANSYS software, finite element analyses of three processes, namely, ordinary V-type bending, laser assisted V-type bending and laser/ultrasonic assisted V-type bending of TC4 titanium alloy, were carried out. The influence laws of bending force, laser and ultrasonic vibration on the bending process of titanium alloy were determined by the analysis results of geometric shape, springback angle and equivalent strain of the bent part. The results show that during the laser/ultrasonic assisted V-type bending process, the springback of titanium alloy bent parts is better suppressed by utilizing the local high temperature generated by the laser,and the surface and volume effects produced by the ultrasonic vibration, as well as the composite effect of the laser/ultrasonic vibration energy, and the quality of titanium alloy bent parts is further improved. Moreover, this method has the advantages of process simplicity and excellent implementability.

基金项目:
国家自然科学基金资助项目(52075347);辽宁省自然科学基金资助项目(2022-MS-295)
作者简介:
作者简介:冯卓(2000-),男,硕士研究生 E-mail:2573879247@qq.com 通信作者:高铁军(1977-),男,博士,教授 E-mail:tiejun_gao@163.com
参考文献:

 [1]李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(S1): 280-282.


Li Y, Zhao Y Q, Zeng W D. Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(S1): 280-282.

[2]洪权, 郭萍, 周伟. 钛合金成形技术与应用[J]. 钛工业进展, 2022, 39(5): 27-32.

Hong Q, Guo P, Zhou W. Technique and application of titanium alloy[J]. Forming Titanium Industry Progress, 2022, 39(5): 27-32.

[3]赵兴科, 徐明亮, 徐帅. 钛合金激光表面加工研究进展[J]. 材料研究与应用, 2023, 17(4): 643-657.

Zhao X K, Xu M L, Xu S. Research progress in laser surface processing of titanium alloys[J]. Materials Research and Application, 2023, 17(4): 643-657.

[4]董文彬, 张雅晶, 缑瑞宾, 等. 外载荷对激光弯曲成形边界效应的影响[J]. 塑性工程学报, 2020, 27(11): 41-45.

Dong W B, Zhang Y J, Gou R B, et al. Effect of external load on edge effect of laser bending[J]. Journal of Plasticity Engineering, 2020, 27(11): 41-45.

[5]李紫慧, 杨恒峰, 张高磊, 等. 激光弯曲成形机理与翘曲抑制研究[J]. 应用激光, 2023, 43(4): 94-99.

Li Z H, Yang H F, Zhang G L, et al. Study on mechanism of laser forming and edge effect suppression[J]. Applied Laser, 2023, 43(4): 94-99.

[6]管延锦, 孙胜. 板料激光弯曲的屈曲机理的研究[J]. 激光技术, 2001(1): 11-14.

Guan Y J, Sun S. Study on buckling mechanism of laser bending of the sheet metal[J]. Laser Technology, 2001(1): 11-14.

[7]Yao Z, Kim G Y, Faidley L A, et al. Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting[J]. Journal of Materials Processing Technology, 2012, 212(3): 640-646.

[8]高铁军, 刘小军, 于鲲, 等. 超声振动对TC1钛合金板材拉伸性能的影响[J]. 稀有金属材料与工程, 2019, 48(1): 286-292.

Gao T J, Liu X J, Yu K, et al. Effects of ultrasonic vibration on tensile properties of TC1 titanium alloy sheet[J]. Rare Metal Materials and Engineering, 2019, 48(1): 286-292.

[9]韩光超, 胡济涛, 万炜强, 等. 超声振动辅助塑性成形及形性预测研究进展[J]. 精密成形工程, 2023, 15(7): 48-62.

Han G C, Hu J T, Wan W Q, et al. Advances in ultrasonic vibration-assisted plastic forming and prediction of formability[J]. Journal of Netshape Forming Engineering, 2023, 15(7): 48-62.

[10]Gao T J, Wang K X, Lu H T, et al. Effect of compound energy-field with temperature and ultrasonic vibration on mechanical properties of TC2 titanium alloy[J]. Journal of Wuhan University of Technology (Materials Science), 2022, 37(1): 85-89.

[11]Gao T J, Wang X, Yang Y, et al. Effect of compound energy-field with temperature and ultrasonic vibration on bending properties of 2195 Al-Li alloy[J]. Rare Metal Materials and Engineering, 2022, 51(4): 1226-1230.

[12]Gao T J, Wang X, Liu S Q, et al. Effect of ultrasonic vibration on mechanical properties and bulging performance of TA2 titanium alloy sheet[J]. Rare Metal Materials and Engineering, 2020, 49(12): 4010-4015.

[13]李长富, 杜金航, 钦兰云, 等. 超声振动对激光沉积Ti-6Al-4V钛合金组织与性能的影响 [J]. 稀有金属, 2024, 48(5): 632-639.

Li C F, Du J H, Qin L Y, et al. Microstructure and properties of Ti-6Al-4V titanium alloy by laser deposited with ultrasonic vibration [J]. Chinese Journal of Rare Metals, 2024, 48(5): 632-639.

[14]Jiang S, Jia Y, Zhang H, et al. Plastic deformation behavior of Ti foil under ultrasonic vibration in tension[J]. Journal of Materials Engineering and Performance, 2017, 26: 1769-1775.

[15]苏智超. 铝合金板材激光弯曲的精度控制与有限元分析[D]. 锦州:辽宁工业大学, 2016.

Su Z C. Precision Control and Finite Element Analysis of Laser Bending of Aluminum Alloy Sheet[D]. Jinzhou: Liaoning University of Technology, 2016.

[16]张晓敏. 金属板材激光成形工艺参数及成形规律研究[D]. 秦皇岛:燕山大学, 2009.

Zhang X M. Technological Parameter and Forming Rule Study of Metal Sheet′s Laser Forming[D]. Qinhuangdao: Yanshan University, 2009.

[17]王旭. 温度/超声复合能场下的铝锂合金板材及弯曲性能研究[D]. 沈阳:沈阳航空航天大学, 2021.

Wang X. Research Study on Al-Li Alloy Sheets and Bending Properties Under the Compound Energy-field with Temperature and Ultrasonic Vibration[D]. Shenyang: Shenyang Aerospace University, 2021.

[18]Yao Z, Kim G Y, Wang Z, et al. Acoustic softening and residual hardening in aluminum: Modeling and experiments[J]. International Journal of Plasticity, 2012, 39: 75-87.

[19]中国航空材料手册编辑委员会. 中国航空材料手册第四卷[M]. 2版. 北京: 中国标准出版社, 2001.

Editorial Committee of China Aviation Materials Manual. Chinese Aviation Materials Manual, Volume IV [M]. 2nd Edition. Beijing: China Standards Press, 2001.

[20]《航空制造工程手册》总编委会主编. 航空制造工程手册(焊接)[M]. 北京: 航空工业出版社, 1996.

Chief Editor of the General Editorial Board of “Manual of Aviation Manufacturing Engineering”. Aviation Manufacturing Engineering Manual (Welding) [M]. Beijing: Aviation Industry Press, 1996.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9