[1]Li D, Liaw P K, Xie L, et al. Advanced high-entropy alloys breaking the property limits of current materials[J]. Journal of Materials Science & Technology, 2024, 186: 219-230..
[2]吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566.
Lyu Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys[J]. Acta Metallurgica Sinica, 2018, 54(11): 1553-1566.
[3]Wang Z, Chen S, Yang S, et al. Light-weight refractory high-entropy alloys: A comprehensive review[J]. Journal of Materials Science & Technology, 2023, 151: 41-65.
[4]Slobodyan M, Pesterev E, Markov A. Recent advances and outstanding challenges for implementation of high entropy alloys as structural materials[J]. Materials Today Communications, 2023, 36: 106422.
[5]Zhang Z, Armstrong D E J, Grant P S. The effects of irradiation on CrMnFeCoNi high-entropy alloy and its derivatives[J]. Progress in Materials Science, 2021, 123: 100807.
[6]张炜,徐琴,吴帅帅, 等. NbMoTiVSix难熔高熵合金组织结构及力学性能[J]. 稀有金属, 2023, 47(9): 1204-1212.
Zhang W, Xu Q, Wu S S, et al. Microstructure and mechanical properties of NbMoTiVSix refractory high entropy alloy [J]. Chinese Journal of Rare Metals, 2023, 47(9): 1204-1212.
[7]Yan X, Zhang Y, Zou Y. Near-superplastic behavior of a body-centered cubic Zr50Ti35Nb15 multi-principal element alloy via dynamic recrystallization[J]. Scripta Materialia, 2023, 227: 115308.
[8]Hua N, Wang W, Wang Q, et al. Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys[J]. Journal of Alloys and Compounds, 2021, 861: 157997.
[9]Yuan Y, Yuan W, Zhi Y, et al. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys[J]. Materials Research Letters, 2019, 7(6): 225-231.
[10]景然, 炊鹏飞, 张锋刚. 固溶时效处理对TiZrNb合金组织和性能的影响[J]. 材料热处理学报, 2018, 39(3): 37-41.
Jing R, Chui P F, Zhang F G. Effect of solution and aging treatment on microstructure and mechanical properties of TiZrNb alloy [J]. Transactions of Materials and Heat Treatment, 2018, 39(3): 37-41.
[11]Wang S P, Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties[J]. Materials Science and Engineering: C, 2017, 73: 80-89.
[12]Lei Z, Liu X, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature, 2018, 563(7732): 546-550.
[13]Jiao M, Lei Z, Wu Y, et al. Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys[J]. Nature Communications, 2023, 14(1): 806.
[14]Wu L, Yang X, Li T, et al. Achieving superior mechanical properties and biocompatibility in an O-doping TiZrNb medium entropy alloy[J]. Intermetallics, 2023, 161: 107991.
[15]Huang H, Wu Y, He J, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering[J]. Advanced Materials, 2017, 29(30): 1701678.
[16]Gou S, Gao M, Shi Y, et al. Additive manufacturing of ductile refractory high-entropy alloys via phase engineering[J]. Acta Materialia, 2023, 248: 118781.
[17]Pan Q, Zhang L, Feng R, et al. Gradient-cell-structured high-entropy alloy with exceptional strength and ductility[J]. Science, 2021, 374(6570): 984-989.
[18]Tao N R, Lu K. Dynamic plastic deformation (DPD): A novel technique for synthesizing bulk nanostructured metals[J]. Journal of Materials Science & Technology, 2007, 23(6): 771-774.
[19]Zhao S, Zhang R, Yu Q, et al. Cryoforged nanotwinned titanium with ultrahigh strength and ductility[J]. Science, 2021, 373(6561): 1363-1368.
[20]An Z, Mao S, Jiang C, et al. Achieving superior combined cryogenic strength and ductility in a high-entropy alloy via the synergy of low stacking fault energy and multiscale heterostructure[J]. Scripta Materialia, 2024, 239: 115809.
[21]Chen F, Tan Y B, Xiang S, et al. Enhanced strengthening effect via nano-twinning in cryo-rolled FeCoCrNiMo0.2 high-entropy alloys[J]. Materials Science and Engineering: A, 2023, 866: 144676.
[22]Xiong F, Wu Y, Liu X, et al. Enhancing cryogenic yield strength and ductility of the Al0.1CoCrFeNi high-entropy alloy by synergistic effect of nanotwins and dislocations[J]. Scripta Materialia, 2023, 232: 115495.
[23]Ramesh S, Anne G, Naik G M, et al. Microstructural and mechanical characterisation of Al-Zn-Mg-Cu alloy processed by multi-directional cryo-forging[J]. Materials Today: Proceedings, 2021, 46: 5752-5756.
[24]Eleti R R, Stepanov N, Yurchenko N, et al. Cross-kink unpinning controls the medium- to high-temperature strength of body-centered cubic NbTiZr medium-entropy alloy[J]. Scripta Materialia, 2022, 209: 114367.
[25]Li Y Z, Zhao S L, He S H, et al. Enhancing yield stress and uniform elongation in an ultrathin packaging steel via controlling dislocation density[J]. International Journal of Plasticity, 2022, 155: 103334.
[26]Cook D H, Kumar P, Payne M I, et al. Kink bands promote exceptional fracture resistance in a NbTaTiHf refractory medium-entropy alloy[J]. Science, 2024, 384(6692): 178-184.
[27]Wang S, Shu D, Shi P, et al. TiZrHfNb refractory high-entropy alloys with twinning-induced plasticity[J]. Journal of Materials Science & Technology, 2024, 187: 72-78.
[28]Eleti R R, Stepanov N, Zherebtsov S. Mechanical behavior and thermal activation analysis of HfNbTaTiZr body-centered cubic high-entropy alloy during tensile deformation at 77 K[J]. Scripta Materialia, 2020, 188: 118-123.
[29]Wen X, Zhu L, Naeem M, et al. Strong work-hardenable body-centered-cubic high-entropy alloys at cryogenic temperature[J]. Scripta Materialia, 2023, 231: 115434.
|