网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车轮毂轴承芯轴锻造微观组织演变及工艺优化
英文标题:Microstructure evolution and process optimization of forging for automobile hub bearing mandrel
作者:张日1 2 康乃正2 黄江华2 纪宏超1 2 3 裴未迟1 黄晓敏1 孙超凡1 
单位:1. 华北理工大学 机械工程学院 2. 浙江兆丰机电股份有限公司 3. 浙江大学 材料科学与工程学院 
关键词:轮毂轴承 芯轴 锻造 晶粒尺寸 动态再结晶 等效应变 
分类号:TG316.3
出版年,卷(期):页码:2025,50(8):1-10
摘要:

 汽车轮毂轴承芯轴锻件的微观组织受热变形影响,对锻造成形质量有很大影响。以等温热压缩实验为基础,结合Deform软件建立了嵌入微观组织模型的三维半对称有限元模型,分析了温度、等效应变、动态再结晶行为和晶粒尺寸变化,通过田口实验法研究锻造温度、锻造速度和摩擦因数对汽车轮毂轴承芯轴锻件组织的影响,得出在锻造温度为1100 ℃、锻造速度为350 mm·s-1和摩擦因数为0.1条件下的汽车轮毂轴承芯轴锻件的晶粒尺寸比较细小。最后,在最佳工艺参数下进行生产试制,并对锻后组织进行分析,结果符合生产要求。

 The microstructure of automobile wheel bearing mandrel forgings is affected by the thermal deformation, which has a great influence on the forging quality. Therefore, based on the isothermal hot compression test, a three-dimensional semi-symmetric finite element model embedded in the microstructure model was established by using software Deform, and the changes of temperature, equivalent strain, dynamic recrystallization behavior and grain size were analyzed. Then, the influences of forging temperature, forging speed and friction coefficient on the microstructure of automobile wheel bearing mandrel forgings were investigated by using the Taguchi method. And it is concluded that the grain size of automobile wheel bearing mandrel forgings is relatively small under the conditions of the forging temperature of 1100 ℃,the forging speed of 350 mm·s-1 and the friction coefficient of 0.1. Finally, the trial production was conducted under the optimal process parameters, and the post-forging microstructure was analyzed. The results indicate that the requirements for production are met.

基金项目:
河北省教育厅产学研专项(CXY2024054);唐山市人才计划项目(A202202008)
作者简介:
作者简介:张日(2000-),男,硕士研究生 E-mail:1587131484@qq.com 通信作者:纪宏超(1986-),男,博士,教授 E-mail:jihongchao@ncst.edu.cn
参考文献:

 [1]Ji H C, Song G, Huang X M, et al. Precision hot forging forming experiment and numerical simulation of a railway wagon bogie adapter[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(1): 907-925.


[2]伍贤洪,闫焱.基于数值模拟的汽车差速器壳锻造工艺分析及实验研究 [J]. 锻压技术, 2024, 49(9): 18-26.

Wu X H, Yan Y. Analysis and experimental research on forging process of automotive differential housing based on numerical simulation[J]. Forging & Stamping Technology, 2024, 49(9): 18-26.

[3]王玲,张伟,梁磊,等.60E1A1尖轨跟端模锻成形工艺数值模拟[J].锻压技术,2024,49(9):35-42.

Wang L, Zhang W, Liang L, et al. Numerical simulation on die forging process for 60E1A1 pointed rail heel end [J]. Forging & Stamping Technology, 2024, 49(9): 35-42.

[4]Huang X M, Zang Y, Ji H C, et al. Combination gear hot forging process and microstructure optimization[J]. Journal of Materials Research and Technology, 2022, 19: 1242-1259.

[5]Meng F X, Cai Z Y, Chen Q M. Multi-objective optimization of preforming operation in near-net shape forming of complex forging[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105: 4359-4371.

[6]宋志峰,逯云杰,马磊,等. 一种车用法兰盘零件的锻造工艺研究及模具结构优化 [J]. 锻压技术, 2023, 48(9): 15-22, 48.

Song Z F, Lu Y J, Ma L, et al. Research on forging process and optimization on die structure for an automotive flange part[J]. Forging & Stamping Technology, 2023, 48(9): 15-22, 48.

[7]王云海,龚志华,赵吉庆,等. 9Cr3W3Co耐热钢锻造工艺数值模拟及实验研究[J]. 塑性工程学报, 2024, 31(10): 17-26.

Wang Y H, Gong Z H, Zhao J Q, et al. Numerical simulation and experimental study on forging process of 9Cr3W3Co heat-resistant steel [J]. Journal of Plasticity Engineering, 2024, 31(10): 17-26.

[8]Luo S Y, Kai Y, Li J, et al. Numerical analysis on the deformation characteristics and microstructure behaviors of forged IN718 aeroengine drum[J]. The International Journal of Advanced Manufacturing Technology, 2023, 126(7): 3749-3764.

[9]周礼菊,孙如梦,高振伟,等.基于CAE的汽车铝合金控制臂锻造成形工艺[J].锻压技术,2024,49(3):1-7.

Zhou L J, Sun R M, Gao Z W, et al. Forging process on automotive aluminum alloy control arm based on CAE [J]. Forging & Stamping Technology, 2024, 49(3): 1-7.

[10]Zhu P, Yang S, Gao Z J, et al. Optimization of hot deformation parameters for multi-directional forging of Ti65 alloy based on the integration of processing maps and finite element method[J]. Journal of Materials Research and Technology, 2024, 29: 5271-5281.

[11]陈鑫,王匀,张太良,等. 基于数值模拟和响应面法的CVT带轮轴终锻成形优化研究[J]. 塑性工程学报, 2020, 27(12): 30-36.

Chen X, Wang Y, Zhang T L, et al. Research on optimization of final forging forming of CVT pulley shaft based on numerical simulation and response surface method [J]. Journal of Plasticity Engineering, 2020, 27(12): 30-36.

[12]王敬梓.中碳钢高温大压下轧制流变行为及动态再结晶规律研究[D].沈阳:东北大学,2017.

Wang J Z. Research on Rheological Behavior and Dynamic Recrystallization of Medium Carbon Steel under High Temperature and Heavy Reduction Rolling[D]. Shenyang: Northeastern University, 2017.

[13]张学奇.单座阀阀杆热模锻工艺研究[D].上海:上海工程技术大学,2016.

Zhang X Q. Research on Single Seated Valve Stem Hot Forging Process[D]. Shanghai: Shanghai University of Engineering Science, 2016.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9