[1]李军,刘鑫,曹广祥,等.汽车车身高强度钢的应用发展及挑战[J].汽车工艺与材料, 2021(8):1-6.
Li J, Liu X, Cao G X, et al. Application development and challenge on high strength steel for automobile body [J].Automobile Technology & Material, 2021(8):1-6.
[2]郭鹤,张玉华. 基于MMC准则的双相高强钢HC820/1180DPD+Z断裂失效模型分析[J].锻压技术, 2023, 48(10):235-244.
Guo H, Zhang Y H. Analysis on fracture failure model for dualphase highstrength steel HC820/1180DPD+Z based on MMC criterion [J]. Forging & Stamping Technology, 2023, 48(10):235-244.
[3]王彦婷,刘海娜,王凯.基于HyperMesh应变速率对零件材料性能影响分析[J].机械设计与制造, 2024(6):242-245.
Wang Y T, Liu H N, Wang K. Effect of strain rate on material properties of carbody parts based on HyperMesh [J].Machinery Design & Manufacture, 2024(6):242-245.
[4]董振通,孟宪明,管建军,等.双相钢HC420/780DP动态力学性能及其本构模型研究[J].辽宁石油化工大学学报, 2023, 43(1):61-66.
Dong Z T, Meng X M, Guan J J, et al. Dynamic mechanical properties and constitutive model of double phase steel HC420/780DP [J]. Journal of Liaoning Petrochemical University, 2023, 43(1):61-66.
[5]张春菊,丁轩,杨明球,等. DP980钢的动态力学性能及本构模型构建[J].钢铁,2022, 57(2):157-161.
Zhang C J, Ding X, Yang M Q, et al. Dynamic mechanical properties and constitutive model of DP980 steel [J].Iron & Steel, 2022, 57(2):157-161.
[6]武欣,方正,李国.1300 MPa级热成形钢高应变速率本构模型分析[J].塑性工程学报,2023,30(7):118-126.
Wu X, Fang Z, Li G. Analysis of high strain rate constitutive model of 1300 MPa hotstamped steel [J].Journal of Plasticity Engineering, 2023,30(7):118-126.
[7]贾仕博,袁超,罗浩瑄,等.高强马氏体钢MS1300在车型中的应用研究[J].汽车零部件,2023(10):39-42.
Jia S C, Yuan C, Luo H X, et al. Research on application of high strength martensitic steel MS1300 in vehicle [J].Automobile Parts, 2023(10):39-42.
[8]杨天一,王禹,王焕.马氏体钢MS1180在高应变速率下的力学性能[J]. 金属世界,2020(6):5-7.
Yang T Y, Wang Y, Wang H. Mechanical behavior of martensitic steel MS1180 at high strain rate [J]. Metal World, 2020(6):5-7.
[9]罗葆钦,赵立佳,张峰,等.高强高塑马氏体汽车钢的快速回火调控[J].钢铁研究学报,2024,36(9):1203-1211.
Luo B Q, Zhao L J, Zhang F, et al. Rapid tempering control of highstrength and highplasticity martensitic automotive steel [J].Journal of Iron and Steel Research,2024,36(9):1203-1211.
[10]阙燚彬,毛丹丹,李宏军,等. 微合金化低碳马氏体钢的显微组织及力学性能[J]. 机械工程材料,2024,48(6):39-47.
Kan Y B, Mao D D, Li H J, et al. Microstructure and mechanical properties of microalloyed low carbon martensitic steel [J].Materials for Mechanical Engineering,2024,48(6):39-47.
[11]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[12]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统[S].
GB/T 30069.2—2016, Metallic material—Tensile testing at high strain rates—Part 2: Servohydraulic and other test systems[S].
[13]张伟,潘跃,刘华赛,等.应变速率对增强成形性双相钢性能影响分析[J].钢铁, 2022,57(4):123-129.
Zhang W, Pan Y, Liu H S, et al. Effect of strain rate on properties of dual phase steel with high formability[J].Iron & Steel, 2022,57(4):123-129.
[14]李倩倩,孙雪丽,吕宝占.基于静态三点弯曲超高强钢硬化行为模型分析[J].塑性工程学报,2024,31(3):100-106.
Li Q Q, Sun X L, Lyu B Z. Model analysis on hardening behavior of ultra high strength steel based on static threepoint bending [J].Journal of Plasticity Engineering, 2024, 31(3):100-106.
[15]罗玉梅,王博,李伟.基于落锤压溃高强双相钢断裂失效模型[J].塑性工程学报,2021,28(9):200-206.
Luo Y M, Wang B, Li W. Fracture failure model of highstrength dualphase steel based on falling weight collapse [J].Journal of Plasticity Engineering,2021,28(9):200-206.
[16]洛绒邓珠,刘潇如,杨佳,等. 不同应变率下高强钢的拉伸行为及力学性能分析[J]. 高压物理学报,2024,38(3):37-48.
Luorong D Z, Liu X R, Yang J, et al. Tensile behavior and mechanical performance analysis of highstrength steels at varying strain rates [J]. Chinese Journal of High Pressure Physics,2024,38(3):37-48.
|