网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
8418模具钢的高温变形行为及本构模型分析
英文标题:High-temperature deformation behavior and constitutive model analysis on 8418 die steel
作者:陈琦1 李华英1 赵明1 黄芳1 苏官正1 李娟2 赵广辉2 
单位:1.太原科技大学 材料科学与工程学院 2.太原科技大学 重型机械教育工程部研究中心 
关键词:8418模具钢 高温变形行为 本构模型 应变补偿Arrhenius模型 动态再结晶 热加工图 
分类号:TG142
出版年,卷(期):页码:2025,50(7):239-247
摘要:

 为了研究8418模具钢在高温条件下的变形行为及其本构模型,采用Gleeble-3800热模拟试验机进行热压缩实验,温度范围为950~1150 ℃,应变速率为0.010.1110 s-1,压缩率为55%。实验结果显示:随着温度从950 ℃升高到1150 ℃,8418模具钢的应力显著降低;应变速率从0.01 s-1增加到10 s-1时,应力值显著提高。根据流变曲线,构建了应变补偿的Arrhenius本构模型,准确预测了高温变形行为。根据动态材料模型(Kumar-Prasad)建立了热加工图,确定了变形温度为1100~1150 ℃、应变速率为0.01~0.05 s-18418模具钢最佳热加工区域。显微组织分析显示,在最佳热加工区域,材料发生大面积动态再结晶,晶粒均匀且呈等轴状,表现出较好的加工稳定性。本研究为8418模具钢的热加工工艺参数的合理选择提供了重要参考。

 In order to investigate the deformation behavior and constitutive model of 8418 die steel  under high-temperature conditions, hot compression experiments were conducted by thermal simulation testing machine Gleeble-3800 with the temperature range of 950-1150 , the strain rates of 0.01, 0.1, 1 and 10 s-1, and the compression ratio of 55%. The results show that as the temperature increases from 950 to 1150 , the stress of  8418 die steel decreases significantly, and when the strain rate increases from 0.01 s-1 to 10 s-1, the stress value increases significantly. Based on the theological curve, the strain-compensated Arrhenius constitutive model was constructed to accurately predict the high-temperature deformation behavior of the material. According to the dynamic material model (Kumar-Prasad), a hot processing map was established, and the optimal hot working region of 8418 die steel  was determined to be the deformation temperature of 1100-1150 and the strain rate of 0.01-0.05 s-1. Microstructural analysis shows that in the optimal hot working region, the material undergoes large-area dynamic recrystallization with uniform and equiaxed grains, demonstrating good processing stability. Thus, this study provides an important reference for the reasonable selection of hot processing parameters for 8418 die steel.

基金项目:
山西省科技成果引导专项(202204021301057)
作者简介:
作者简介:陈琦(1998-),男,硕士研究生 E-mail:857637648@qq.com 通信作者:李华英(1981-),男,博士,硕士生导师,教授 E-mail:lihy@tyust.edu.cn
参考文献:

 [1]Motlagh Z S, Tolaminejad B, Momeni A. Prediction of hot deformation flow curves of 1.4542 stainless steel [J]. Metals and Materials International, 2021, 27(8): 2512-2529.


 


[2]Lin Y C, Chen X M, Liu G. A modified JohnsonCook model for tensile behaviors of typical highstrength alloy steel [J]. Materials Science and Engineering: A, 2010, 527(26): 6980-6986.


 


[3]Shi C, Xu H, Wang S, et al. Hot deformation characteristics and microstructure evolution of electroslag remelted 15Cr-22Ni-1Nb austenitic heatresistant steel [J]. Materials Characterization, 2021, 182: 111564. 


 


[4]Samantaray D, Mandal S, Bhaduri A K. A comparative study on Johnson Cook, modified ZerilliArmstrong and Arrheniustype constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel [J]. Computational Materials Science, 2009, 47(2): 568-576.


 


[5]AbbasiBani A, ZareiHanzaki A, Pishbin M H, et al. A comparative study on the capability of JohnsonCook and Arrheniustype constitutive equations to describe the flow behavior of Mg-6Al-1Zn alloy [J]. Mechanics of Materials, 2014, 71: 52-61.


 


[6]Sahoo S K, Sahoo B N, Panigrahi S K. Effect of insitu submicron sized TiB2 reinforcement on microstructure and mechanical properties in ZE41 magnesium matrix composites [J]. Materials Science and Engineering: A, 2020, 773: 138883.


 


[7]Zhang G H, Tian Y H, Song Y H,et al. A comparative study of three constitutive models concerning thermomechanical behavior of Q345 steel during hot deformation [J]. Crystals, 2022, 12(9): 1262-1262.


 


[8]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892.


 


[9]Lin X J, Huang H J, Yuan X G, et al. Establishment and validity verification of the hot processing map of a Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy with a lamellar microstructure [J]. Materials Characterization, 2022, 183: 111599.


 


[10]王晓溪, 张翔, 王华东, . 基于热加工图的6061铝合金热压缩变形特性研究[J]. 特种铸造及有色合金, 2017, 37(9): 944-948.


Wang X X, Zhang X, Wang H D, et al. Study on hot compressive characteristics of 6061 aluminum alloy based on processing map [J]. Special Casting and Nonferrous Alloys, 2017, 37(9): 944-948.


 


[11]舒滢, 曾卫东, 周军, . BT20合金高温变形行为的研究 [J]. 材料科学与工艺, 2005, 13(1): 66-69.


Shu Y, Zeng W D, Zhou J, et al. A study on the hot deformation behavior of BT20 alloy [J]. Materials Science and Technology, 2005, 13(1): 66-69.


 


[12]朱鸿昌. TB17钛合金热加工过程组织演变规律研究 [D]. 南昌:南昌航空大学,2022.


 


Zhu H C. Research on the Microstructure Evolution of TB17 Titanium Alloy during Hot Working Process [D]. Nanchang: Nanchang Hangkong University, 2022.


 


[13]栾娜. 镁合金高温变形力学行为和组织演变规律研究 [D]. 长沙: 湖南大学, 2008.


 


Luan N. Research on Hightemperature Deformation Mechanical Behavior and Microstructure Evolution of Magnesium Alloy [D]. Changsha: Hunan University, 2008.


 


[14]Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


 


[15]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22-32.


 


[16]Xia Y F, Long S, Wang T Y, et al. A study at the workability of ultrahigh strength steel sheet by processing maps on the basis of DMM [J]. High Temperature Materials and Processes, 2017, 36(7): 657-667.


 


[17]Prasad Y V R K. Recent advances in the science of mechanical processing [J]. Indian Journal of Technology, 1990, 28(6-8): 435-451.


 


[18]王斌, 王琪伟, 宗影影, . 5A06铝合金环形连接框等温模锻坯料设计及工艺验证[J]. 锻压技术, 2023, 48(1): 29-45.


Wang B, Wang Q W, Zong Y Y, et al. Design on isothermal die forging billet for 5A06 aluminum alloy ring connecting frame and process validation[J]. Forging & Stamping Technology, 2023, 48(1): 29-45.


 


[19]曾云, 李卫平, 刘升, . Simufact Forming在模拟30CrNi2MoV钢锭加热及锻造过程的应用[J]. 锻压技术, 2024, 49(1): 59-66.


 


Zeng Y, Li W P, Liu S, et al. Application of Simufact Forming in heating and forging process simulation of 30CrNi2MoV steel ingot[J]. Forging & Stamping Technology, 2024, 49(1): 59-66.


 


[20]贾飞凡. ZL114A铸造铝合金MIG焊接工艺及性能研究 [D]. 太原: 中北大学, 2016.


 


Jia F F. Research on MIG Welding Process and Performance of ZL114A Cast Aluminum Alloy [D]. Taiyuan: North University of China, 2016.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9