网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
热-机械载荷作用下的挤压筒低周疲劳计算
英文标题:Low cycle fatigue calculation on extrusion cylinder under thermo-mechanical load
作者:苏芳1 2 王晓国1 2 任银银1 2 周改丽1 2 
单位:1.太原重工股份有限公司 技术中心 2.太重(天津)滨海重型机械有限公司 技术中心 
关键词:挤压筒 热-机械载荷 低周疲劳 过盈装配 局部应力-应变法 
分类号:TG375
出版年,卷(期):页码:2025,50(7):192-197
摘要:

 为了研究挤压筒结构的疲劳破坏情况,根据循环应力状态及破坏时局部发生塑性变形的特点,认为挤压筒的疲劳失效属于低周疲劳(LCF)。建立挤压筒热-机械耦合数值模型,施加热载荷、装配载荷以及工作载荷,进行瞬态热-结构静力学分析并找出结构可能发生破坏的危险点。绘制此危险点的应力历程曲线及循环应力-应变曲线。使用诺伯修正公式对局部应力-应变的关系作近似估算。代入由结构几何形状和材料确定的LCF参数,计算危险点的局部应力与应变。基于局部应力应变情况,使用兰德格拉夫损伤公式计算结构发生疲劳破坏的载荷循环次数,结果表明,计算得出的载荷循环次数与挤压筒内衬的实际服役寿命一致。

 In order to study the fatigue failure of extrusion cylinder structure, according to its cyclic stress state and the characteristics of local plastic deformation during failure, it was considered that the fatigue failure of extrusion cylinder belonged to the low cycle fatigue (LCF), and the thermo-mechanical coupling numerical model of extrusion cylinder was established. Then, the thermal load, assembly load and working load were applied to perform transient thermal-structure static analysis and find the dangerous point where the structure was damaged, and the stress history curve and cyclic stress-strain curve of the danger point were plotted. Furthermore, the local stress-strain relationship was estimated by using Norbert correction formula, and the local stress and strain at the danger point were calculated by substituting LCF parameters determined by the structural geometry and material. Finally, based on the local stress and strain conditions, the number of load cycles at which the fatigue failure of the structure occurred was calculated by using Landgraf damage formula. The result shows that the calculated number of load cycles is consistent with the actual service life of extrusion cylinder lining.

基金项目:
天津市科技领军(培育)企业认定及支持项目(20YDLZGX00290);天津市“项目+团队”重点培养专项(XC202050)
作者简介:
作者简介:苏芳(1985-),女,硕士,高级工程师 E-mail:sufang@tz.com.cn
参考文献:

 [1]刘莹莹,王庆娟.金属挤压、拉拔工艺及工模具设计[M].北京:冶金工业出版社,1920.


 


Liu Y Y, Wang Q J.Metal Extruding & Drawing Process and Mold Design[M].BeijingMetallurgical Industry Press1920.


 


[2]叶尔曼诺克,李西铭,张渌泉.铝合金壁板挤压[M] .北京:国防工业出版社,1988.


 


Губкин С И, Li X M, Zhang L Q.Wide Flats Extrusion of Aluminum Alloy[M].BeijingNational Defense Industry Press, 1988.


 


[3]魏军.金属挤压机 [M].北京:化学工业出版社,2006.


 


Wei J.Metal Extrusion Press[M].BeijingChemical Industry Press2006.


 


[4]陈飞,魏科,党利,等.薄壁矩形管铝型材分流挤压过程挤压力影响研究[J].锻压技术,20234812):129-137.


 


Chen FWei KDang Let al.Study on influence of extrusion force during split extrusion process for thinwalled rectangular tube aluminum profile[J].Forging & Stamping Technology20234812):129-137.


 


[5]徐俊峰.挤压筒磨损机理及其影响因素研究[D].重庆:重庆大学,2019.


 


Xu J F.Study on Wear Mechanism of Extrusion Container and Its Influencing Factors[D].ChongqingChongqing University2019.


 


[6]朱振强,宁辉,左鹏鹏,等.应变幅对H13热作模具钢等温疲劳行为的影响[J].工程科学学报,2021435):656-662.


 


Zhu Z QNing HZuo P Pet al. Effect of strain amplitude on the isothermal fatigue behavior of H13 hot work die steel[J].Chinese Journal of Engineering2021435):656-662.


 


[7]徐国财,黎军顽,左鹏鹏,等.-机械载荷下H13钢力学响应行为实验和数值分析[J].材料导报,2020344):08159-08178.


 


Xu G CLi J WZuo P Pet al. Experimental and numerical study on mechanical response behavior of H13 steel under thermomechanical loading[J].Material Reports2020344):08159-08178.


 


[8]王艳鹏.铝挤压机挤压工具制造[J].装备制造技术,20182):185-187.


 


Wang Y P.The manufacture of extrusion tools for aluminum extrusion press [J].Equipment Manufacture Technology20182):185-187.


 


[9]王霞,荆志龙.挤压筒内衬纵向开裂原因分析[J].物理测试,2023411):25-30.


 


Wang XJing Z L.Cause analysis of longitudinal cracking of extrusion cylinder lining [J].Physics Examination and Testing2023411):25-30.


 


[10]朱元好.铝型材挤压模具的结构优化与疲劳仿真分析[D].烟台:烟台大学,2023.


 


Zhu Y H.Structure Optimization and Fatigue Simulation Analysis of Aluminum Profile Extrusion Die[D].YantaiYantai University2023.


 


[11]李超越,刘志龙,梁晓捷.挤压筒内衬开裂原因分析[J]锻造与冲压,202311):72-74.


 


Li C YLiu Z LLiang X J.Cause analysis of extrusion cylinder lining[J].Forging & Metalforming202311):72-74.


 


[12]宋宗焘.大型挤压筒复杂服役条件下蠕变疲劳损伤机理与寿命预测[D].重庆:重庆大学,2015.


 


Song Z T.Creepfatigue Damage Mechanism and Lifetime Prediction of Large Extrusion Container under Complicated Service Conditions[D].ChongqingChongqing University2015.


 


[13]刘鸿文.材料力学(II[M].北京:高等教育出版社,2017.


 


Liu H W.Mechanics of Materials(II)[M].BeijingHigher Education Press2017.


 


[14]Landgraf R WRichards F DLaPointe N R. Fatigue life predictions for a notched member under complex load histories [J] . SAE1975:112987340.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9