网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
150 kN双向拉伸试验机机架结构的非概率优化设计
英文标题:Non-probabilistic optimization design of frame structure for 150 kN biaxial tensile test machine
作者:关铂镔1 2 张毅升1 2 赵哲2 3 吴向东2 万敏2 
单位:1. 中国运载火箭技术研究院空间物理重点实验室 2. 北京航空航天大学 机械工程及自动化学院 3. 北京精密机电控制设备研究所 
关键词:双向拉伸试验机 非概率优化 结构轻量化 不确定性分析 拓扑优化 
分类号:TH122
出版年,卷(期):页码:2025,50(7):173-182
摘要:

 针对传统方法设计的双向拉伸试验机结构笨重和精度不足的问题,提出了结合Kriging模型和泰勒展开的非概率优化设计框架,并将其应用于150 kN机架结构的轻量化设计。建立了机架结构的非概率优化模型,并提出求解流程。对机架材料性能的不确定性进行了测试和表征,并利用Kriging模型和泰勒展开对拓扑优化机架结构进行了不确定性分析。通过遗传算法对机架结构进行优化,分析结果表明:150 kN机架的材料性能存在不确定性,拓扑优化难以得到最佳轻量化机架结构,且其确定性结果存在违反设计要求风险;提出的非概率优化设计框架可有效实现结构轻量化并确保其严格满足设计要求,经拓扑优化的150 kN机架实现了减重12.95%

 For the problem of heavy structure and insufficient precision of biaxial tensile test machine designed by the traditional method, the non-probabilistic optimization design framework combining Kriging model and Taylor expansion was proposed and applied to the lightweight design of 150 kN frame structure. Then, the non-probabilistic optimization model of frame structure was established, and a solution process was proposed. Furthermore, the uncertainty of frame material properties was tested and characterized, and the uncertainty analysis on the topological optimized frame structure was conducted by Kriging model and Taylor expansion. Finally, the frame structure was optimized by genetic algorithm, and the analysis results show that the material properties of 150 kN frame are uncertain, and it is difficult to obtain the optimal lightweight frame structure by topology optimization. Its deterministic result shows the risk of violating the design requirements. Thus, the proposed non-probabilistic optimization design framework effectively achieves the structure lightweighting and ensure that it strictly meets the design requirements,the 150 kN frame after topology optimization achieves a weight reduction of 12.95%.

基金项目:
国家自然科学基金资助项目 (51875027)
作者简介:
作者简介:关铂镔(1996-),男,博士,工程师 E-mail:2725385673@qq.com 通信作者:吴向东(1970-),男,博士,副教授 E-mail:wuxiangdongbuaa@163.com
参考文献:

 [1]Ferron G, Makinde M. Design and development of a biaxial strength testing device [J]. Journal of Testing and Evaluation, 1988, 16(3): 253-256.


 


[2]Tasan C C, Hoefnagels J, Quaak G, et al. Inplane biaxial loading of sheet metal until fracture [A]. 11th International Congress and Exhibition on Experimental and Applied[C]. Orlando, Florida, USA, 2008.


 


[3]Boehler J P, Demmerle S, Koss S. A new direct biaxial testing machine for anisotropic materials [J]. Experimental Mechanics, 1994, 34(1): 1-9.


 


[4]ISO 16842:2021, Metallic materialsSheet and stripBiaxial tensile testing method using a cruciform test piece [S].


 


[5]Wu X D, Wan M, Zhou X B. Biaxial tensile testing of cruciform specimen under complex loading [J]. Journal of Materials Processing Technology, 2005, 168(1): 181-183.


 


[6]熊晶洲,万敏,孟宝,等. 基于多轴同步控制的微尺度双向伺服加载系统 [J]. 北京航空航天大学学报,2019, 45(1): 174-182.


 


Xiong J Z, Wan M, Meng B, et al. Microscaled biaxial loading test system based on multiaxis synchronous control [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 174-182.


 


[7]高亮, 邱浩波, 肖蜜,等. 优化驱动的设计方法 [M]. 北京:清华大学出版社, 2020.


 


Gao L, Qiu H B, Xiao M, et al. Optimizationdriven Design Method [M]. Beijing: Tsinghua University Press, 2020.


 


[8]Zhao X H, Liu Y X, Hua L, et al. Finite element analysis and topology optimization of a 12000 kN fine blanking press frame [J]. Structural and Multidisciplinary Optimization, 2016, 54(2): 375-389.


 


[9]Ma H F, Wang J X, Lu Y N, et al. Lightweight design of turnover frame of bridge detection vehicle using topology and thickness optimization [J]. Structural and Multidisciplinary Optimization, 2019, 59(3): 1007-1019.


 


[10]Lu S B, Ma H G, Xin L, et al. Lightweight design of bus frames from multimaterial topology optimization to crosssectional size optimization [J]. Engineering Optimization, 2019, 51(6): 961-977.


 


[11]Guan B B, Wan M, Wu X D, et al. Lightweight design process considering assembly connection and nonprobabilistic uncertainty with its application to machine structural design [J]. Engineering Optimization, 2023, 55: 1060-1081.


 


[12]Wen Y, Chen X Q, Luo W C, et al. Review of uncertaintybased multidisciplinary design optimization methods for aerospace vehicles [J]. Progress in Aerospace Sciences, 2011, 47(6): 450-479.


 


[13]Wang X J, Shi Q H, Fan W C, et al. Comparison of the reliabilitybased and safety factor methods for structural design [J]. Applied Mathematical Modelling, 2019, 72: 68-84.


 


[14]Meng Z, Hao P, Li G, et al. Nonprobabilistic reliabilitybased design optimization of stiffened shells under buckling constraint [J]. ThinWalled Structures, 2015, 94: 325-333.


 


[15]Luo Z X, Wang X J, Shi Q H, et al. UBCconstrained nonprobabilistic reliabilitybased optimization of structures with uncertainbutbounded parameters [J]. Structural and Multidisciplinary Optimization, 2021, 63(1): 311-326.


 


[16]Acar P. Recent progress of uncertainty quantification in smallscale materials science [J]. Progress in Materials Science, 2021, 117: 100723.


 


[17]Zhang Y S, Wu X D, Guan B B, et al. Application and practical validation of topology optimization technology for the frame of biaxial tensile testing machine [J]. Structural and Multidisciplinary Optimization, 2020, 62(3): 1519-1533.


 


[18]Ni B Y, Jiang C, Huang Z L. Discussions on nonprobabilistic convex modelling for uncertain problems [J]. Applied Mathematical Modelling, 2018, 59: 54-85.


 


[19]Guan B B, Wan M, Wu X D, et al. Nonprobabilistic optimization model of engineering structures with dependent interval variables [J]. Applied Mathematical Modelling, 2022, 102: 285-304.


 


[20]Jiang C, Zhang Q F, Han X, et al. Multidimensional parallelepiped model-A new type of nonprobabilistic convex model for structural uncertainty analysis [J]. International Journal for Numerical Methods in Engineering, 2015, 103(1): 31-59.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9