[1]Ferron G, Makinde M. Design and development of a biaxial strength testing device [J]. Journal of Testing and Evaluation, 1988, 16(3): 253-256.
[2]Tasan C C, Hoefnagels J, Quaak G, et al. Inplane biaxial loading of sheet metal until fracture [A]. 11th International Congress and Exhibition on Experimental and Applied[C]. Orlando, Florida, USA, 2008.
[3]Boehler J P, Demmerle S, Koss S. A new direct biaxial testing machine for anisotropic materials [J]. Experimental Mechanics, 1994, 34(1): 1-9.
[4]ISO 16842:2021, Metallic materials—Sheet and strip—Biaxial tensile testing method using a cruciform test piece [S].
[5]Wu X D, Wan M, Zhou X B. Biaxial tensile testing of cruciform specimen under complex loading [J]. Journal of Materials Processing Technology, 2005, 168(1): 181-183.
[6]熊晶洲,万敏,孟宝,等. 基于多轴同步控制的微尺度双向伺服加载系统 [J]. 北京航空航天大学学报,2019, 45(1): 174-182.
Xiong J Z, Wan M, Meng B, et al. Microscaled biaxial loading test system based on multiaxis synchronous control [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 174-182.
[7]高亮, 邱浩波, 肖蜜,等. 优化驱动的设计方法 [M]. 北京:清华大学出版社, 2020.
Gao L, Qiu H B, Xiao M, et al. Optimizationdriven Design Method [M]. Beijing: Tsinghua University Press, 2020.
[8]Zhao X H, Liu Y X, Hua L, et al. Finite element analysis and topology optimization of a 12000 kN fine blanking press frame [J]. Structural and Multidisciplinary Optimization, 2016, 54(2): 375-389.
[9]Ma H F, Wang J X, Lu Y N, et al. Lightweight design of turnover frame of bridge detection vehicle using topology and thickness optimization [J]. Structural and Multidisciplinary Optimization, 2019, 59(3): 1007-1019.
[10]Lu S B, Ma H G, Xin L, et al. Lightweight design of bus frames from multimaterial topology optimization to crosssectional size optimization [J]. Engineering Optimization, 2019, 51(6): 961-977.
[11]Guan B B, Wan M, Wu X D, et al. Lightweight design process considering assembly connection and nonprobabilistic uncertainty with its application to machine structural design [J]. Engineering Optimization, 2023, 55: 1060-1081.
[12]Wen Y, Chen X Q, Luo W C, et al. Review of uncertaintybased multidisciplinary design optimization methods for aerospace vehicles [J]. Progress in Aerospace Sciences, 2011, 47(6): 450-479.
[13]Wang X J, Shi Q H, Fan W C, et al. Comparison of the reliabilitybased and safety factor methods for structural design [J]. Applied Mathematical Modelling, 2019, 72: 68-84.
[14]Meng Z, Hao P, Li G, et al. Nonprobabilistic reliabilitybased design optimization of stiffened shells under buckling constraint [J]. ThinWalled Structures, 2015, 94: 325-333.
[15]Luo Z X, Wang X J, Shi Q H, et al. UBCconstrained nonprobabilistic reliabilitybased optimization of structures with uncertainbutbounded parameters [J]. Structural and Multidisciplinary Optimization, 2021, 63(1): 311-326.
[16]Acar P. Recent progress of uncertainty quantification in smallscale materials science [J]. Progress in Materials Science, 2021, 117: 100723.
[17]Zhang Y S, Wu X D, Guan B B, et al. Application and practical validation of topology optimization technology for the frame of biaxial tensile testing machine [J]. Structural and Multidisciplinary Optimization, 2020, 62(3): 1519-1533.
[18]Ni B Y, Jiang C, Huang Z L. Discussions on nonprobabilistic convex modelling for uncertain problems [J]. Applied Mathematical Modelling, 2018, 59: 54-85.
[19]Guan B B, Wan M, Wu X D, et al. Nonprobabilistic optimization model of engineering structures with dependent interval variables [J]. Applied Mathematical Modelling, 2022, 102: 285-304.
[20]Jiang C, Zhang Q F, Han X, et al. Multidimensional parallelepiped model-A new type of nonprobabilistic convex model for structural uncertainty analysis [J]. International Journal for Numerical Methods in Engineering, 2015, 103(1): 31-59.
|