网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于响应面与NSGA-Ⅱ的香菇菌渣成型参数优化
英文标题:Optimization on molding parameters for mushroom residue based on response surface and NSGA-Ⅱ
作者:李震1 乔志忠1 孙恒阳1 李斌1 雷瞾1 许胜2 
单位:1.内蒙古科技大学 机械工程学院 2.内蒙古科技大学 土木工程学院 
关键词:稳定密度 抗跌落破损率 比能耗 多目标优化 响应面法 香菇菌渣 
分类号:TK6
出版年,卷(期):页码:2025,50(7):153-159
摘要:

 为解决香菇菌渣燃料颗粒生产过程中出现的成型质量差和成型能耗高的问题。采用响应面法分析香菇菌渣颗粒成型工艺参数对成型颗粒稳定密度、抗跌落破损率和比能耗的影响规律,建立其输入与输出的多目标数学模型。同时,以稳定密度和抗跌落破损率最大、比能耗最小为目标,采用非支配排序遗传算法(NSGA-Ⅱ)对成型工艺参数进行多目标优化,并通过实验验证优化结果的准确性。结果表明:当含水率为14%、压制速度为103 mm·min-1、保压时间为22 s时,成型颗粒稳定密度可达到1.114 g·cm-3,抗跌落破损率和比能耗分别为98.80%4.06 J·g-1,且预测值与实验值相对误差较小,表明了优化结果的可靠性。

 In order to solve the problems of poor molding quality and high molding energy consumption in the production process of mushroom residue fuel pellets, the influence laws of the molding process parameters of mushroom residue pellet on the stable density, drop resistance breakage rate and specific energy consumption of the formed pellets were analyzed by the response surface method, the multi-objective mathematical model of its input and output was established. Then, at the same time, with the goal of maximizing the stable density and drop resistance breakage rate and minimizing the specific energy consumption, the multi-objective optimization on the molding process parameters was conducted by the non-dominated sorting genetic algorithm (NSGA-II), the accuracy of the optimization results was verified by experiments. The results show that when the moisture content is 14%, the pressing speed is 103 mm·min-1 and the holding time is 22 s, the stable density of the formed pellets reaches 1.114 g·cm-3, the drop resistance breakage rate and the specific energy consumption are 98.80% and 4.06 J·g-1, respectively. The experimental verification shows that the relative error between the predicted and experimental values is small, indicating the reliability of the optimization results.

基金项目:
国家自然科学基金资助项目(52366018);内蒙古自治区鄂尔多斯科技局项目(YF20232302);高校基本科研业务费项目(2024RCTD006);内蒙古自然科学基金资助项目(2025MS05072)
作者简介:
作者简介:李震(1973-),男,博士,教授 E-mail:lizhen_730106@126.com 通信作者:乔志忠(1995-),男,硕士研究生 E-mail:1453151249@qq.com
参考文献:

 [1]景全荣.我国食用菌机械化生产现状及发展趋势[J].中国农机监理,2020(9):23-24.


 

Jing Q R. Current situation and development trend of edible fungus mechanization production in China [J]. China Agricultural Machinery Equipment,2020(9):23-24.

 

[2]王伟强,刘晶,田新会,等. ‘甘农4号’小黑麦品种在青海省不同区域的适应性评价[J].草地学报,2020,28(6):1626-1634.

 

Wang W Q,Liu J,Tian X H,et al. Evaluations on the adaptability of triticale wittmack ‘Gannong No.4’in different regions of Qinghai province [J]. Acta Agrestia Sinica,2020,28 (6):1626-1634.

 

[3]李艳丽. 宁夏冬闲田冬牧70黑麦种植养畜研究[D]. 北京:中国农业科学院,2008.

 

Li Y L. Study on the Stock Keeping and Planting of Secale Cereale L Cv Wintergrazer-70 in the Winter Fallow Fielden Ningxia Hui Autonomous Regirn [D]. Beijing:Chinese Academy of Agricultural Sciences,2008.

 

[4]Sanchez J E,Huerta G,Montiel E. Mushroom biology and mushroom products[A].Proceedings of the Fourth International Conference[C]. México,2002. 

 

[5]郭远,宋爽,高琪,等.食用菌菌渣资源化利用进展[J].食用菌学报,2022,29(2):103-114.

 

Guo Y,Song S,Gao Q,et al. Progress in utilization of spent mushroom substrate [J]. Acta Edulis Fungi,2022,29 (2):103-114.

 

[6]董雪梅,王延锋,孙靖轩,等. 食用菌菌渣综合利用研究进展[J]. 中国食用菌,2013,32(6):4-6.

 

Dong X M,Wang Y F,Sun J X,et al. Research on utilization of edible fungi residue [J]. Edible Fungi of China,2013,32(6):4-6.

 

[7]卫智涛,周国英,胡清秀. 食用菌菌渣利用研究现状[J].中国食用菌,2010,29(5):3-6,11.

 

Wei Z T,Zhou G Y,Hu Q X. Research and utilization of edible fungi residue [J]. Edible Fungi of China,2010,29(5):3-6,11.

 

[8]李震,赵召才,陶鑫,等. 沙柳和香菇菌渣混配成型过程中的力链演变[J].锻压技术,2024,49(4):161-168.

 

Li Z,Zhao Z C,Tao X,et al. Evolution on force chain in mixing and forming process of Salix and mushroom residue[J]. Forging & Stamping Technology,2024,49(4):161-168.

 

[9]饶曙,李伟振,姜洋,等. 金针菇菌渣成型特性研究[J].华南农业大学学报,2018,39 (2):110-116.

 

Rao S,Li W Z,Jiang Y,et al. Study on pelletization characteristics of flammulina velutipes residues [J]. Journal of South China Agricultural University,2018,39(2):110-116.

 

[10]胡强.生物炭成型过程机理及成型炭的气化/还原特性研究[D].武汉:华中科技大学,2018.

 

Hu Q. Study on the Mechanism of Biochar Densification and the Properties of Gasification/Reduction of Biochar Pellet [D]. Wuhan:Huazhong University of Science and Technology, 2018.

 

[11]鞠晓男.粘结剂高压雾化对生物质致密成型影响的研究[D].北京:北京林业大学,2022.

 

Ju X N. Study on the Effects of Adding Binder by Highpressure Spraying on the Biomass Densification [D]. Beijing:Beijing Forestry University,2022.

 

[12]Zafari A,Kianmehr M H. Factors affecting mechanical properties of biomass pellet from compost[J].Environmental Technology,2014,35(4):478-486.

 

[13]Tumuluru J S,Tabil L G,Song Y,et al. Impact of process conditions on the density and durability of wheat,oat,canola,and barley straw briquettes[J]. Bioenergy Research,2015,8(1):388-401.

 

[14]王金鸣.玉米秸秆生物质热压-粘结剂混合成型机理研究[D].北京:北京林业大学,2021.

 

Wang J M. The Study on Mechanism of Hot Pressingbinder Mixture Molding of Corn Stalk Biomass [D].Beijing:Beijing Forestry University,2021. 

 

[15]Lindley J A, Vossoughi M. Physical properties of biomass briquets[J]. Transactions of the ASAE,1989,32(2):0361-0366.

 

[16]郭星星,帅美荣,王建梅,等. 基于NSGA-Ⅱ算法的激光熔覆单道成形工艺参数多目标优化[J].中国表面工程,2023,36(3):87-100.

 

Guo X X, Shuai M R, Wang J M, et al. Multiobjective optimization of laser cladding singlepass forming process parameters based on NSGA-Ⅱ algorithm [J]. China Surface Engineering,2023,36(3):87-100.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9