[1]宋君,董广,丁相阳,等.UCMW机组冷连轧过程板形形成机理及预报模型[J].锻压技术,2024,49(7):243-250.
Song J,Dong G,Ding X Y,et al.Formation mechanism and prediction model of strip flatness in cold tandem rolling process of UCMW mill[J]. Forging & Stamping Technology,2024,49(7):243-250.
[2]张振,李欣,刘颂,等.基于多类别生产状态的烧结矿转鼓指数预测模型[J].中国冶金,2022,32(1):27-35.
Zhang Z, Li X, Liu S, et al. Predictive model of sinter drum index based on multicategory production status[J].China Metallurgy, 2022, 32(1): 27-35.
[3]汪龙军,丁成砚,范宇超,等.基于深度森林的热轧带钢凸度预测模型[J].轧钢,2023,40(1):90-96.
Wang L J, Ding C Y, Fan Y C, et al. Hot rolled strip crown prediction model based on deep forest[J]. Steel Rolling, 2023,40(1): 90-96.
[4]曹建国,江军,赵秋芳,等.基于数据挖掘的宽厚板板凸度控制[J].中南大学学报,2019,50(11):2743-2752.
Cao J G, Jiang J, Zhao Q F, et al. Wide and heavy plate crown control based on data mining[J]. Journal of Central South University,2019,50(11):2743-2752.
[5]马红,熊雯,张雪荣.基于极限学习机的热轧板凸度预测方法[J].装备维修技术,2023(2):74-77.
Ma H,Xiong W, Zhang X R. Prediction method of hot rolled plate crown based on limit learning machine[J].Equipment Technology, 2023(2):74-77.
[6]郝学斌.深度信念网络算法下的热连轧板凸度预测模型[J].材料与冶金学报,2022,21(5):364-370.
Hao X B. Prediction model of crown of hot rolling based on deep belief network algorithm[J]. Journal of Materials and Metallurgy, 2022,21(5):364-370.
[7]陈楠,李旭,栾峰,等.基于机理与数据驱动的热连轧板凸度组合预测[J].哈尔滨工业大学学报, 2023,55(10):74-81.
Chen N, Li X, Luan F, et al. Prediction of hot strip crowns of hot tandem rolling based on mechanism and data driving[J]. Journal of Harbin Institute of Technology,2023,55(10): 74-81.
[8]王优龙,李维刚,王永强.基于集成特征选择和SVR的热连轧板凸度预测[JL].钢铁,2024,59(1):99-107.
Wang Y L, Li W G, Wang Y Q. Crown prediction of hot strip steel based on integrated feature selection and SVR[J]. Iron & Steel,2024,59(1):99-107.
[9]刘元铭,王振华,王涛,等.热轧带钢出口凸度数据驱动建模及智能化预测分析[J].中国机械工程,2020,31(22):2728-2733.
Liu Y M, Wang Z H, Wang T, et al. Datadriven modeling and intelligent prediction analysis for hot strip outlet crowns[J]. China Mechanical Engineering,2020,31(22): 2728-2733.
[10]姬亚锋,宋乐宝,原浩,等. 基于KPLS与SVM的热连轧板凸度预测[J]. 中国冶金,2021,31(1): 20-24,30.
Ji Y F, Song L B, Yuan H, et al. Strip crown prediction of hotrolled strip based on KPLS integrate SVM[J]. China Metallurgy,2021,31(1): 20-24,30.
[11]郭云川,张长胜,段青娜,等.融合多策略的改进秃鹰搜索算法[J].控制与决策,2024,39(1):69-77.
Guo Y C,Zhang C S,Duan Q N, et al. Improved bald eagle search algorithm fused with multiple rategies[J]. Control and Decision,2024,39(1):69-77.
[12]于军琪,薛志璐,赵安军,等.基于多策略改进麻雀搜索算法的并联冷机系统节能优化[J].控制与决策,2024,39(6):1810-1818.
Yu J Q,Xue Z L,Zhao A J, et al. Optimization of parallel chillers system based on multistrategy improved sparrow search algorithm for energy saving[J]. Control and Decision, 2024,39(6):1810-1818.
[13]李硕,于洋,宋浩源,等.基于凸度转移理念的冷轧支撑辊辊型设计[J].中国冶金,2023,33(9):112-117.
Li S, Yu Y, Song H Y, et al. Roll contour design of cold rolling backup roll based on crown transfer concept[J].China Metallurgy, 2023, 33(9): 112-117.
[14]江德文,王振阳,戴建华,等.基于支持向量机的高炉煤气利用率预测建模[J].中国冶金,2021,31(4):55-63,67.
Jiang D W, Wang Z Y, Dai J H, et al.Forecast modeling of gas utilization rate of blast furnace based on support vector machine[J].China Metallurgy, 2021, 31(4): 55-63,67.
[15]梁盛楠,刘文博,李雅芝.基于改进局部极化准则的多核SVM模型[J].东北师大学报(自然科学版),2023,55(4):32-38.
Liang S N,Liu W B,Li Y Z. Multiple kernel SVM model based on improved local polarization[J]. Journal of Northeast Normal University(Natural Science Edition),2023,55(4):32-38.
[16]崔兆亿,耿秀丽.基于随机森林和量子粒子群优化的SVM算法[J].计算机集成制造系统,2023,29(9):2929-2936.
Cui Z Y, Geng X L. Support vector machine algorithm based on random forest and quantum particle swarm optimization[J]. Computer Integrated Manufacturing Systems,2023,29(9): 2929-2936.
[17]Amiri M H, Mehrabi Hash N, Montazeri M, et al. Hippopotamus optimization algorithm: A novel natureinspired optimization algorithm [J]. Scientific Reports, 2024, 14(1): 5032.
[18]包金山,杨定坤,张靖,等.基于特征提取与INGOSVM的变压器故障诊断方法[J].电力系统保护与控制,2024,52(7):24-32.
Bao J S,Yang D K,Zhang J,et al. Transformer fault diagnosis method based on feature extraction and INGOSVM[J].Power System Protection and Control,2024,52(7):24-32.
[19]黄鹤,高永博,茹锋,等.基于自适应黏菌算法优化的无人机三维路径规划[J].上海交通大学学报,2023,57(10):1282-1291.
Huang H, Gao Y B, Ru F, et al. 3D Path planning of UAV based on adaptive slime mould algorithm optimization[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1282-1291.
[20]蒋宇飞,许贤泽,徐逢秋,等.多策略融合改进的自适应蜉蝣算法[J].北京航空航天大学学报,2024,50(4):1416-1426.
Jiang Y F,Xu X Z,Xu F Q,et al. Multistrategy fusion improved adaptive mayfly algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1416-1426.
[21]李得恺,张长胜,杨雪松.融合多策略改进的黏菌优化算法[J].模式识别与人工智能,2023,36(7):647-660.
Li D K, Zhang C S, Yang X S. Improved slime mould algorithm fused with multistrategy[J]. Pattern Recognition and Artificial Intelligence, 2023, 36(7): 647-660.
[22]张秀玲,代景欢,康学楠,等.基于多RBF神经网络的板形数据建模[J].矿冶工程,2019,39(6):124-128.
Zhang X L, Dai J H, Kang X N, et al. Plate data modeling based on multiple RBF neural networks[J]. Mining and Metallurgical Engineering, 2019,39(6):124-128.
|