网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
吉帕级复相钢动态力学性能和本构模型分析
英文标题:Analysis on dynamic mechanical properties and constitutive model for GPa-grade complex phase steel
作者:余建华1 赵同铭2 
单位:1.山西机电职业技术学院 汽车工程系 2. 柳州五菱汽车工业有限公司 
关键词:复相钢 力学性能 本构模型 敏感性 防撞梁 三点弯曲 
分类号:TG142.1+3;U463.83
出版年,卷(期):页码:2025,50(7):120-131
摘要:

 为了分析应变速率对吉帕级复相钢力学性能的影响,基于高速拉伸试验机对7种应变速率下HC780/980CP钢的力学性能进行测试,并提取了关键指标的变化规律。采用Johnson-Cook模型和Swift-Hockett-Sherby组合模型拟合获取材料本构模型曲线;基于MMC失效模型,设计不同试样测试方案,并拟合获取材料的失效曲线。基于防撞梁动态三点弯曲试验和仿真结果对比,验证了所搭建本构模型的精度。结果表明:HC780/980CP钢的屈强比达到0.857,表现出应变速率正敏感性,并且在高应变速率范围内敏感性更高;Swift-Hockett-Sherby组合模型拟合曲线强度偏差均值为2.85%,抗拉强度偏差均值为5.17%,表征精度更优;零件仿真与试验结果基本一致,Swift-Hockett-Sherby组合模型获得的最大载荷偏差为4.6%,而Johnson-Cook模型则为12.22%,证明组合模型的表征精度更高,更适用于表征HC780/980CP钢的动态力学性能。

 In order to analyze the influences of strain rate on the mechanical properties of GPa-grade complex phase steel, the mechanical properties of HC7801/980CP steel under seven strain rates were tested by the high-speed tensile testing machine, and the variation patterns of key performance indicators were extracted. Furthermore, the material constitutive model curve was fitted by Johnson-Cook model and Swift-Hockett-Sherby combined model, based on the MMC failure model, the different sample test schemes were designed to fit the failure curve of the material, and the accuracy of the constructed constitutive model was verified based on the comparison between dynamic three-point bending test and simulation results of anti-collision beam. The results show that the yield strength ratio of HC780/980CP steel reaches 0.857, which shows positive sensitivity to strain rate, and the sensitivity is higher in the high strain rate range. The average strength deviation of fitting curve for the Swift-Hockett-Sherby combined model is 2.85%, and the average tensile strength deviation is 5.17%, with better characterization accuracy. The simulation and test results of part are basically consistent, the maximum load deviation obtained by the Swift-Hockett-Sherby combined model is 4.6%, while the Johnson-Cook  model is 12.22%. The results show that the combined model has higher characterization accuracy, which is more suitable for characterizing the dynamic mechanical properties of HC780/980CP steel.

基金项目:
山西省教育科学“十四五”规划2022年度课题(GH-221002)
作者简介:
作者简介:余建华(1980-),女,硕士,讲师 E-mail:31333956@qq.com
参考文献:

 [1]赵征志,陈伟健,高鹏飞,. 先进高强度汽车用钢研究进展及展望[J]. 钢铁研究学报,2020,32(12):1059-1076.


 


Zhao Z Z, Chen W J, Gao P F, et al. Progress and perspective of advanced high strength automotive steel [J]. Journal of Iron and Steel Research,2020,32(12):1059-1076.


 


 


[2]朱国森,韩赟,蒋光锐,. 汽车车身用新型冷轧薄板研发进展[J]. 工程科学学报,2022,44(9):1585-1594.


 


Zhu G S, Han Y, Jiang G R, et al. Research and development progress of new cold rolled sheet steels of car body [J]. Chinese Journal of Engineering,2022,44(9):1585-1594.


 


[3]唐远寿,司宇,徐正萌,.超高强度钢在汽车轻量化中的应用及研究进展[J].金属热处理,2023,48(10):247-254.


 


Tang Y S, Si Y, Xu Z M, et al. Application and research progress of ultrahigh strength steel in automotive lightweight [J].Heat Treatment of Metals,2023,48(10):247-254.


 


[4]巢成新,于强,李秋.汽车用先进高强钢本构模型与韧性断裂模型研究进展[J].精密成形工程,2024,16(1):77-86.


 


Cao C X, Yu Q, Li Q. Research progress on constitutive model and ductile fracture model of advanced high strength steel for automotive applications[J].Journal of Netshape Forming Engineering,2024,16(1):77-86.


 


[5]王秋雨,夏明生,刘淑影,. 组织特征对980 MPa级先进超高强钢成形性能和拉伸行为的影响[J]. 机械工程材料,2023,47(1):100-105,118.


 


Wang Q Y, Xia M S, Liu S Y, et al. Effect of microstructure characteristics on formability and tensile behavior of 980 MPa grade advanced ultrahigh strength steels [J]. Materials for Mechanical Engineering,2023,47(1):100-105,118.


[6]徐勇,段星宇,曾祥成,. 不同应变速率下DP980双相钢微观组织特征及变形机制[J]. 钢铁研究学报,2023,35(5):595-604.


 


Xu Y, Duan X Y, Zeng X C, et al. Microstructure characteristics and deformation mechanism of DP980 dual phase steel at different strain [J]. Journal of Iron and Steel Research, 2023, 35(5):595-604.


 


[7]王彦婷,刘海娜,王凯. 基于HyperMesh应变速率对零件材料性能影响分析[J]. 机械设计与制造,2024,400(6):242-245.


 


Wang Y T, Liu H N, Wang K. Effect of strain rate on material properties of carbody parts based on HyperMesh[J]. Machinery Design & Manufacture,2024,400(6):242-245.


 


[8]曹文楷,刘海兰,曹龙韬. 不同应变速率对S460NL钢板力学性能的影响研究[J]. 轨道交通装备与技术,2024(z1):52-55.


 


Cao W K, Liu H L, Cao L T. The effect of different strain rates on the mechanical properties of S460NL steel plate was studied[J]. Rail Transportation Equipment and Technology, 2024(z1): 52-55.


 


[9]武欣,方正,李国. 1300 MPa级热成形钢高应变速率本构模型分析[J]. 塑性工程学报,2023,30(7):118-126.


 


Wu X, Fang Z, Li G. Analysis of high strain rate constitutive model of 1300 MPa hotstamped steel [J]. Journal of Plasticity Engineering,2023,30(7):118-126.


 


[10]冯新畅,刘希月,唐宇,. TWIP钢的动态力学性能及变形机制研究[J]. 稀有金属材料与工程,2023,52(5):1695-1707.


 


Feng X C, Liu X Y, Tang Y, et al. Dynamic mechanical properties and deformation mechanism of TWIP steel [J]. Rare Metal Materials and Engineering,2023,52(5):1695-1707.


 


[11]侯晓英,刘万春,王军,. 超高强复相钢组织调控及强塑性提升机理[J]. 中国冶金, 2024, 34(1): 61-71.


 


Hou X Y, Liu W C, Wang J, et al. Microstructure control and enhancement mechanism of strengthplasticity for ultrahigh strength complex phase steel [J]. China Metallurgy, 2024, 34(1):61-71.


 


[12]GB/T 228.12021,金属材料拉伸试验第1部分:室温试验方法[S].


 


GB/T 228.12021Metallic materialsTensile testing Part 1: Method of test at room temperature test [S].


 


[13]张梅,陈杨飞,许清,.980MPa级先进高强钢的发展[J].上海金属,2024,46(2):1-9.


 


Zhang M, Chen Y F, Xu Q, et al. Development of 980 MPa grade advanced highstrength steels [J]. Shanghai Metals, 2024, 46(2):1-9.


 


[14]GB/T 30069.22016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统[S].


 


GB/T 30069.22016, Metallic materialTensile testing at high strain ratesPart 2: Servohydraulic and other test systems[S].


 


[15]ISO 26203-22011Metallic materialsTensile testing at high strain ratesPart 2: Servohydraulic and other test systems [S].


 


[16]董振通,孟宪明,管建军,.双相钢HC420/780DP动态力学性能及其本构模型研究[J].辽宁石油化工大学学报,2023,43(1):61-66.


 


Dong Z T, Meng X M, Guan J J, et al. Dynamic mechanical properties and constitutive model of double phase steel HC420/780DP [J].Journal of Liaoning University of Petroleum & Chemical Technology,2023,43(1):61-66.


 


[17]张伟,李春光,韩赟,. 高强双相钢动态力学本构模型对比分析[J]. 塑性工程学报,2021,28(6):75-82.


 


Zhang W, Li C G, Han Y, et al. Comparative analysis of dynamic mechanical constitutive model of high strength dual phase steel [J]. Journal of Plasticity Engineering, 2021, 28(6): 75-82.


 


[18]Bai Y L, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture[J].International Journal of Fracture, 2010, 161(1):1-20.


 


[19]郭鹤,张玉华. 基于MMC准则的双相高强钢HC820/1180DPD+Z断裂失效模型分析[J]. 锻压技术,2023,48(10):235-244.


 


Guo H, Zhang Y H. Analysis on fracture failure model for dualphase highstrength steel HC820/1180DPD+Z based on MMC criterion [J]. Forging & Stamping Technology, 2023, 48(10): 235-244.


 


[20]李倩倩,孙雪丽,吕宝占. 基于静态三点弯曲超高强钢硬化行为模型分析[J]. 塑性工程学报,2024,31(3):100-106.


 


Li Q Q, Sun X L, Lyu B Z. Model analysis on hardening behavior of ultra high strength steel based on static threepoint bending [J]. Journal of Plasticity Engineering,2024, 31(3): 100-106. 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9