[1]Basem A, Alghassab A M, Asadi A A H, et al. Evaluation of microstructure and mechanical characteristics of 2024 aluminum alloys with μAl2O3 additives produced via hydrostatic cyclic expansion extrusion with backpressure[J]. Results in Engineering, 2024, 23: 102403.
[2]Cai Y H, Jiang G D, Dong J L, et al. Microstructure evolution and comprehensive properties of the extruded AA6008 crashbox profiles aged at 210 ℃-220 ℃[J]. Journal of Materials Research and Technology, 2024, 28: 3376-3384.
[3]肖旭, 戚聿东. 中国新能源汽车产业基础再造的思路与路径研究[J]. 北京师范大学学报(社会科学版), 2024 (3): 148-156.
Xiao X, Qi Y D. On the ideas and paths of the industrial foundation reconstruction of China′s new energy automobile [J]. Journal of Beijing Normal University(Social Sciences), 2024 (3): 148-156.
[4]欧阳明高. 中国新能源汽车未来10年周期性和结构性趋势展望[J]. 科技导报, 2024, 42(12): 6-13.
Ouyang M G. Prospects for the cyclical and structural trends of China′s new energy vehicles in the next ten years [J]. Science and Technology Report, 2024, 42(12): 6-13.
[5]王传福. 新能源汽车将形成中国市场的主导地位[J]. 高科技与产业化, 2024, 30(3): 18-19.
Wang C F. New energy vehicles will form a dominant position in the Chinese market [J]. High-Technology & Commercialization, 2024, 30 (3): 18-19.
[6]Yi J, Wang Z H, Liu Z W, et al. FE analysis of extrusion defect and optimization of metal flow in porthole die for complex hollow aluminium profile[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 2094-2101.
[7]Moon Banerjee, Tikendra Nath Verma, Prerana Nashine. Experimental and numerical analysis of extrusion process for AA 7178 alloy with varying process parameters[J]. Materials Today: Proceedings, 2018, 5(2): 6839-6847.
[8]Yu J Q, Zhao G Q, Zhang C S, et al. Dynamic evolution of grain structure and microtexture along a welding path of aluminum alloy profiles extruded by porthole dies[J]. Materials Science & Engineering A, 2017, 682: 679-690.
[9]Lyu J X, Shi Z S, Yu J Q, et al. Analysis of solidstate welding in extruding wide aluminium hollow profiles using a new threecontainer extrusion system[J]. Journal of Manufacturing Processes, 2023, 94: 146-158.
[10]Liu Y D, Wang X L, Xu J, et al. Formation mechanism and optimization strategy of surface backend defects in miniature complex hollow extruded profile[J]. Journal of Materials Processing Technology, 2022, 308: 117726.
[11]孙雪梅. 复杂铝合金型材挤压过程数值建模与模具优化设计方法研究[D]. 济南:山东大学, 2014.
Sun X M. Study on Numerical Modeling for Extrusion Process of Aluminum Profiles with Complex Crosssection and Optimization Die Design [D]. Jinan: Shandong University, 2014.
[12]张海超. 大型复杂铝合金型材挤压过程数值模拟与模具优化及热处理工艺研究[D]. 济南:山东大学, 2021.
Zhang H C. Study on Numerical Simulation of Extrusion Process, Die Optimization and Heat Treatment of Large Complex Aluminum Alloy Profile [D]. Jinan: Shandong University, 2021.
[13]孙雪梅, 赵国群. 悬臂铝合金型材伪分流挤压模具结构设计及其强度分析[J]. 机械工程学报, 2013, 49(24): 39-44.
Sun X M, Zhao G Q. Fake porthole extrusion die structure design and strength analysis for cantilever aluminum alloy profiles [J]. Journal of Mechanical Engineering,2013, 49(24): 39-44.
[14]曾文浩. 带长悬臂结构空心截面铝型材挤压过程数值模拟及模具/工艺优化[D]. 成都:西华大学, 2017.
Zeng W H. Numerical Simulation of Extrusion Process for Hollow Section Aluminium Profile with Long Cantilever and Its Die & Technics Optimization [D]. Chengdu: Xihua University, 2017.
[15]徐海洁, 仝飞, 马峥,等. 复杂截面铝合金型材挤压成形工艺与流动行为研究[J/OL]. 热加工工艺, 2025(15):72-77+84[2025-03-10].https://doi.org/10.14158/j.cnki.1001-3814.20241450.
Xu H J, Tong F, Ma Z, et al. Study on extrusion forming process and flow behavior of aluminum alloy profile with complex crosssection [J/OL]. Hot Working Technology, 2025(15):72-77+84[2025-03-10].https://doi.org/10.14158/j.cnki.1001-3814.20241450.
[16]GB/T 16865—2023, 变形铝、镁及其合金加工制品拉伸试验用试样及方法[S].
GB/T 16865—2023, Test pieces and methods for tensile test for wrought aluminium, magnesium and their alloy products[S].
[17]VDA 238-100, Pl-ttchen-Biegeversuch für metallische Werkstoffe[S].
[18]GB/T 6892—2023, 一般工业用铝及铝合金挤压型材[S].
GB/T 6892—2023, Wrought aluminium and aluminium alloys extruded profiles for general engineering[S].
|