网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超高强钢辊压成形门槛梁轻量化设计
英文标题:Lightweight design on side sill beam of ultra-high strength steel by roll forming
作者:吴海波1 侯迪2 
单位:1.马鞍山职业技术学院 机械工程系 2. 湖南电气职业技术学院 汽车工程学院 
关键词:超高强钢 门槛梁 辊压成形 等效减薄 轻量化 承载特性 
分类号:TG142.41;TG332+.4
出版年,卷(期):页码:2025,50(7):88-95
摘要:

 针对HC550/DP980D+Z超高强钢门槛梁开展轻量化设计,考虑弹性和塑性阶段吸能差异,对高强钢等效减薄公式进行修正,并根据HC820/DP1180D+Z超高强钢的性能,获取减薄后材料的厚度。对材料优化后的成形工艺进行设计,检测分析生产零件的型面公差和减薄率,并基于静态三点弯曲和动态落锤冲击,对比了门槛梁的承载和吸能特性,以验证设计的轻量化方案的可行性。结果表明:采用HC820/DP1180D+Z超高强钢生产门槛梁厚度减薄至1.3 mm,轻量化减重约15.38%;辊压成形需要26道次,强度和最大应变均满足生产要求;零件实测型面公差全部点位均合格,最大减薄率为11.43%;静态三点弯曲峰值载荷为14.2 kN,动态落锤冲击峰值载荷为16.0 kN,平均载荷为7.2 kN,均优于原设计方案。采用修正等效减薄公式开展轻量化设计是可行的。

 The lightweight design of sild sill beam for HC550/DP980D+Z ultra-high strength steel was carried out, and considering the energy absorption difference between elastic and plastic stages, the equivalent thinning formula of high strength steel was modified. Then, according to the properties of HC820/DP1180D+Z ultra-high strength steel, the thickness of material after thinning was obtained, and the optimized forming process of material was designed. Furthermore, the profile tolerance and thinning rate of the produced  parts were tested and analyzed, and based on static three-point bending and dynamic drop-weight impact, the load-bearing and energy absorption characteristics of sild sill beam were compared to verify the feasibility of the lightweight scheme. The results show that the thickness of the sild sill beam produced with HC820/DP1180D+Z ultra-high strength steel is reduced to 1.3 mm, which reduces the weight by about 15.38%. Twenty-six passes are required for roll forming, and both the strength and the maximum strain meet the production requirements. The measured profile tolerances of all points for the part are qualified, and the maximum thinning rate is 11.43%. The peak load of the static three-point bending is 14.2 kN, the peak load of the dynamic drop-weight impact is 16.0 kN, and the average load is 7.2 kN, which are all better than the original design scheme. Thus, it is feasible to use the modified equivalent thinning formula to carry out the lightweight design.

基金项目:
安徽省高等学校科学研究重点项目(2023AH052789);湖南省教育厅科学研究课题(23C0540)
作者简介:
作者简介:吴海波(1989-),男,硕士,讲师 E-mail:wuhaibo@mastc.edu.cn
参考文献:

 [1]赵征志,陈伟健,高鹏飞,.先进高强度汽车用钢研究进展及展望[J].钢铁研究学报, 2020, 32(12):1059-1076.


 


Zhao Z Z, Chen W J, Gao P F, et al. Progress and perspective of advanced high strength automotive steel [J].Journal of Iron and Steel Research, 2020, 32(12):1059-1076.


 


[2]冯毅,张德良,高翔,.面向新能源时代的汽车用钢EVI工程技术发展[J].汽车工艺与材料, 2023(9):8-15.


 


Feng Y, Zhang D L, Gao X, et al. Development of EVI engineering technologies for automotive steel in the new energy era [J].Automobile Technology & Materia, 2023(9):8-15.


 


[3]康元春,徐辉,刘俊峰.车门材料及结构轻量化研究[J].机械设计,2024,41(2):111-115.


 


Kang Y C, Xu H, Liu J F. Research on lightweight of door material and structure[J].Journal of Machine Design, 2024, 41(2):111-115.


 


[4]庞秋,罗博峰,王俊杰.高强钢帽形梁零件冲压减薄预测分析[J].精密成形工程,2022,14(4):55-60.


 


Pang Q, Luo B F, Wang J J. Prediction and analysis of stamping reduction of high strength steel cap beam [J].Journal of Netshape Forming Engineering, 2022,14(4):55-60.


 


[5]张思婉,申超.基于热成形技术和耐撞性汽车B柱轻量化设计[J].机械设计与制造, 2022(7):192-196.


 


Zhang S W, Shen C. Lightweight design of vehicle Bpillar based on hotforming technology and crashworthiness [J].Machinery Design & Manufacture, 2022(7): 192-196.


 


[6]马廷涛,庄厚川,金科,.高强钢材料车身轻量化研究[J].汽车工艺与材料, 2019(5):1-511.


 


Ma T T, Zhuang H C, Jin K, et al. Research on lightweight of high strength steel body materials [J].Automobile Technology & Materia, 2019(5):1-511.


 


[7]谢晖,周诗琦,王品健,.基于侧碰工况的某电动汽车B柱多目标变截面优化设计[J].塑性工程学报, 2020, 27(11):18-25.


 


Xie H, Zhou S Q, Wang P J, et al. Multiobjective variable section optimization design of an electric vehicle Bpillar based on sidecollision conditions [J].Journal of Plasticity Engineering, 2020, 27(11):18-25.


 


[8]崔华丽,李峰,于华.考虑正面碰撞特性汽车前纵梁轻量化设计分析[J]. 机械设计与制造, 2023(8): 158-161.


 


Cui H L, Li F, Yu H. Lightweight design and analysis of carbody front longitudinal based on frontal impact characteristics [J]. Machinery Design & Manufacture, 2023(8): 158-161.


 


[9]张骥超,韩非,黎聪,. 超高强钢辊压门槛零件切断模具磨损优化设计研究[J]. 塑性工程学报,2018,25(3):224-228.


 


Zhang J C, Han F, Li C, et al. Study on optimization design of punching die wear of rollformed ultrahigh strength steel rocker profile [J]. Journal of Plasticity Engineering,2018,25(3):224-228.


 


[10]王涛. 基于可制造性的汽车B柱轻量化设计分析[J]. 机电工程,2020,37(3):277-282.


 


Wang T. Lightweight analysis of vehicle Bpillars based on manufacturability [J]. Mechanical & Electrical Engineering Magazine,2020, 37(3):277-282.


 


[11]李倩倩,孙雪丽,吕宝占. 基于静态三点弯曲超高强钢硬化行为模型分析[J]. 塑性工程学报,2024,31(3):100-106.


 


Li Q Q, Sun X L, Lyu B Z. Model analysis on hardening behavior of ultra high strength steel based on static threepoint bending [J]. Journal of Plasticity Engineering, 2024, 31(3): 100-106.


 


[12]贾仕博,袁超,罗浩瑄,. 高强马氏体钢MS1300在车型中的应用研究[J]. 汽车零部件,2023(10):39-42.


 


Jia S C, Yuan C, Luo H X, et al. Research on application of high strength martensitic steel MS1300 in vehicle [J]. Automobile Parts, 2023(10):39-42.


 


[13]GB/T 2322024, 金属材料弯曲试验方法[S].


 


GB/T 2322024, Metallic materialsBent testing method[S].


 


[14]SAE-China J07092013, 汽车板典型构件的压溃吸能试验方法[S].


 


SAE-China J07092013, Test specifications for typical components of automobile steel sheet [S].

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9