网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于DEFORM模拟的42CrMo4钢锻造过程中的组织演变规律
英文标题:Microstructure evolution laws on 42CrMo4 steel during forging process based on DEFORM simulation
作者:高晟 杨军 蒋鹏 张永鹏 李帅傧 慕斌 沈鑫珺 时大方 任得余 
单位:1. 苏州大学 沙钢钢铁学院 2. 浙江天马轴承集团有限公司 
关键词:42CrMo4钢 锻造 本构模型 再结晶 奥氏体温度 
分类号:TG316.4
出版年,卷(期):页码:2025,50(7):10-20
摘要:

 42CrMo4钢以其优异的性能成为风电轴承套圈的首选材料,但其热变形过程复杂,真实工件尺度下组织演变的研究较少,影响其优化调控。利用DEFORM有限元软件模拟42CrMo4钢的实际生产过程,建立高温热变形的组织演变模型,研究温度场、应变场和微观组织变化对奥氏体演变机制及晶粒尺寸变化的影响。结果表明:在第3次镦粗时,最大载荷为68920 kN;因应变速率低于0.06 s-1,镦粗过程中锤头接触区外奥氏体发生100%动态再结晶;锤头接触区外奥氏体晶粒在第1次镦粗时显著细化至约70 μm,而锤头接触区的奥氏体在第1次拔长时细化至约40 μm;后续锻造过程对奥氏体晶粒细化影响不大,且变形间隔奥氏体会略微粗化。

 42CrMo4 steel has become the preferred material for wind turbine bearing rings due to its excellent properties, but the complexity of its thermal deformation process and the limited research on microstructure evolution under the actual workpiece scale affects its optimization and regulation. Therefore, the actual production process of 42CrMo4 steel  was simulated by finite element software DEFORM, and its microstructure evolution model during high-temperature thermal deformation was established to research the influences of temperature field, strain field and microstructure changes on the austenite transformation mechanisms and grain size variations. The results show that the maximum load reaches 68920 kN during the third upsetting process. Because the strain rate is lower than 0.06 s-1, the austenite outside the hammer contact zone undergoes 100% dynamic recrystallization during the upsetting process. The austenite grains outside the hammer contact zone are significantly refined to about 70 μm during the first upsetting, while the austenite in the hammer contact zone is refined to about 40 μm during the first drawing. The subsequent forging processes has little effect on the refinement of austenite grains, and the austenite in the deformation interval is slightly coarsened.

基金项目:
中央引导地方科技发展资金资助项目(2024ZY02008)
作者简介:
作者简介:高晟(2003-),男,本科生 E-mail:gaosheng0109@163.com 通信作者:沈鑫珺(1989-),男,博士,副教授 E-mail:xjshen88@suda.edu.cn
参考文献:

 [1]杨培文, 李洪涛, 杨锡运, . 风电机组技术现状分析及未来发展趋势预测[J]. 电力电子技术, 2020, 54(3): 79-82.


 


Yang P W, Li H T, Yang X Y, et al. Analysis of the present situation of wind turbine technology and forecast of future development trend[J]. Power Electronics, 2020, 54(3): 79-82.


 


[2]梁雅鑫, 蔡欣, 郑雷刚, . 二次回火对42CrMo4M钢组织性能的影响[J]. 材料热处理学报, 2023, 44(8): 106-114.


 


Liang Y X, Cai X, Zheng L G, et al. Effect of secondary tempering on microstructure and properties of 42CrMo4M steel [J]. Transactions of Materials and Heat Treatment,2023,44(8):106-114.


 


[3]付海成, 贺欢. 42CrMo4大截面主轴锻件热处理工艺及性能研究[J]. 一重技术, 2024(3): 22-27, 42.


 


Fu H C, He H. Research on heat treatment process and property of 42CrMo4 large section spindle forging[J]. CFHI Technology, 2024(3): 22-27, 42.


 


[4]韩蕾蕾, 徐志强, 杨树峰. 42CrMo4风电齿圈锻件内部裂纹形成原因及控制措施[J]. 连铸, 2024(2): 50-55.


 


Han L L, Xu Z Q, Yang S F. Formation causes and control measures of internal cracks in 42CrMo4 wind power gear ring forging[J]. Continuous Casting, 2024(2): 50-55.


 


[5]陈美成, 赵宇, 郭庆涛, . 42CrMo钢圆坯芯部热裂形成条件热模拟[J]. 中国冶金, 2023, 33(6): 65-72, 132.


 


Chen M C, Zhao Y, Guo Q T, et al. Thermal simulation of hot tearing formation conditions in center of 42CrMo steel round bloom[J]. China Metallurgy, 2023, 33(6): 65-72, 132.


 


[6]冯富春,洪慧平,肖玉.42CrMo4钢动态再结晶规律及动态再结晶模型研究[A]. 中国金属学会.第九届中国钢铁年会论文集[C].北京, 2013.


 


Feng F C, Hong H P, Xiao Y. Dynamic recrystallization rule and model of 42CrMo4 Steel[A]. Chinese Society of Metals. Proceedings of the 9th China Iron and Steel Annual Meeting[C]. Beijing, 2013.


 


[7]蔺永诚, 陈明松, 钟掘. 42CrMo钢静态再结晶晶粒尺寸模型[A]. 2008年中国机械工程学会年会暨甘肃省学术年会论文集[C].兰州, 2008.


 


Lin Y C, Chen M S, Zhong J. Modeling of static recrystallization grain size of 42CrMo steel[A]. Proceedings of the 2008 Annual Meeting of Chinese Mechanical Engineering Society and the Academic Annual Meeting of Gansu Province[C].Lanzhou, 2008.


 


[8]蔺永诚, 陈明松, 钟掘. 42CrMo钢形变奥氏体的静态再结晶[J]. 中南大学学报(自然科学版), 2009, 40(2): 411-416.


 


Lin Y C, Chen M S, Zhong J. Static recrystallization behaviors of deformed 42CrMo steel[J]. Journal of Central South University (Science and Technology), 2009, 40(2): 411-416.


 


[9]蔺永诚, 陈明松, 钟掘. 42CrMo钢亚动态再结晶行为研究[J]. 材料热处理学报, 2009, 30(2): 71-75.


 


Lin Y C, Chen M S, Zhong J. Investigation on metadynamic recrystallization behavior of 42CrMo steel[J]. Transactions of Materials and Heat Treatment, 2009, 30(2): 71-75.


 


[10]蔺永诚, 陈明松, 钟掘. 形变温度对42CrMo钢塑性成形与动态再结晶的影响[J]. 材料热处理学报, 2009, 30(1): 70-74.


 


Lin Y C, Chen M S, Zhong J. Effects of deformation temperatures on plastic formation and microstructure evolution of 42CrMo steel[J]. Transactions of Materials and Heat Treatment, 2009, 30(1): 70-74.


 


[11]李永堂, 齐会萍, 付建华, . 42CrMo钢铸造环坯辗扩成形理论与工艺分析[J]. 机械工程学报, 2014, 50(2): 77-85.


 


Li Y T, Qi H P, Fu J H, et al. Theoretical and process analyses on the castblank rolling forming of 42CrMo bearing rings[J]. Journal of Mechanical Engineering, 2014, 50(2): 77-85.


 


[12]Chen M S, Lin Y C, Ma X S. The kinetics of dynamic recrystallization of 42CrMo steel[J]. Materials Science and Engineering: A, 2012, 556: 260-266.


 


[13]Chen M S, Yuan W Q, Lin Y C, et al. Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method[J]. Vacuum, 2017, 146: 142-151.


 


[14]白丽琴, 孙宪进, 吴扬, . 42CrMo钢特厚椭圆坯轧制工艺数值模拟[J]. 中国冶金, 2024, 34(5): 106-113.


 


Bai L Q, Sun X J, Wu Y, et al. Numerical simulation for rolling process of ultraheavy elliptical billet of 42CrMo steel[J]. China Metallurgy, 2024, 34(5): 106-113.


 


[15]孙昊. TiB/TC25G合金热加工过程中的组织演变规律研究[D]. 合肥:中国科学技术大学, 2023.


 


Sun H. Microstructure Evolution of TiB/TC25G Alloy during Thermal Processing[D]. Hefei: University of Science and Technology of China, 2023.


 


[16]曹建国, 王天聪, 李洪波, . 基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J]. 机械工程学报, 2016, 52(4): 90-96, 102.


 


Cao J G, Wang T C, Li H B, et al. Hightemperature constitutive relationship of nonoriented electrical steel based on modified Arrhenius model[J]. Journal of Mechanical Engineering, 2016, 52(4): 90-96, 102.


 


[17]Yu Z M, Peng W F, Zhang X, et al. Evolution of microstructure of aluminum alloy hollow shaft in cross wedge rolling without mandrel[J]. Journal of Central South University, 2022, 29(3): 807-820.


 


[18]康涛. 高强塑性中锰钢的制备工艺及组织性能调控研究[D]. 北京:北京科技大学, 2023.


 


Kang T. Study on Preparation Process and Microstructure and Property Control of Highstrengthplastic Medium Manganese Steel[D]. Beijing: University of Science and Technology Beijing, 2023.


 


[19]王凤琪, 于忠奇, 孟烨晖, . 复杂内筋铝筒段旋压变形规律和再结晶组织演变数值仿真[J]. 航空学报, 2023, 44(9): 92-102.


 


Wang F Q, Yu Z Q, Meng Y H, et al. Deformation mechanism and recrystallization microstructure evolution of aluminum stiffened cylinder during hot flow spinning based on numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9):92-102.


 


[20]税烺, 付建辉, 赖宇. Gh4065a镍基高温合金多道次压缩变形组织演变规律[J]. 锻压技术, 2023, 48(3): 244-254.


 


Shui L, Fu J H, Lai Y. Microstructure evolution laws of multipass compression deformation fornickelbase superalloy GH4065A[J], Forging & Stamping Technology, 2023, 48(3):244-254.


 


[21]李璐瑶, 任璐英, 闫钊鸣, . 变形态MggdY-znzr合金热处理微观组织演变规律与硬度研究[J]. 兵器装备工程学报, 2023, 44(10): 72-77.


 


Li L Y, Ren L Y, Yan Z M, et al. Effects of heat treatment processing on microstructure evolution and microhardness of deformed MgGdY-ZnZr alloys[J]. Joural of Ordnance Equipment Engineering, 2023, 44 (10):72-77.


 


[22]Song C, Cao J, Xiao J, et al. Hightemperature constitutive relationship involving phase transformation for nonoriented electrical steel based on PSODNN approach[J]. Materials Today Communications, 2023, 34: 105210.


 


[23]庄大勇, 任大为, 李洋, . Al-8.79Zn-2.16Mg-2.11Cu-0.12Zr合金的本构关系和微观组织演变[J]. 锻压技术, 2024, 46(6):239-248.


 


Zhuang D Y, Ren D W, Li Y, et al. Constitutive relationship and microstructure evolution of Al-8.79Zn-2.16Mg-2.11Cu-0.12Zr alloy[J]. Forging & Stamping Technology, 2024, 46(6):239-248.


 


[24]岑耀东, 陈林, 包喜荣, . 道岔贝氏体钢轨轧后冷却过程的弯曲变形及微观组织演变规律[J]. 机械工程学报, 2024,60(14):139-152.


 


Cen Y D, Chen L, Bao X R, et al. Bending deformation and microstructure evolution of bainite rail during cooling process after rolling[J]. Journal of Mechanical Engineering, 2024,60(14):139-152.


 


[25]赵焯雅, 孟令健, 林鹏, . TC4钛合金跨相区连续热压缩α相组织演变规律及织构形成机理[J].金属学报,2025615):717-730.


 


Zhao Z Y, Meng L J, Lin P, et al. Microstructure evolution and texture formation mechanism of a phase during continuous throughtransus compression of TC4 titanium alloy[J]. Acta Metallurgica Sinica,2025,61(5):717-730.


 


[26]张艳, 黄光杰, 何杰, . Ea4t钢的高温动态软化模型及晶粒演化研究[J]. 钢铁研究学报, 2024, 36(5): 650-659.


 


Zhang Y, Huang G J, He J, et al. Study on dynamic softening model and grain evolution of EA4T axle steel at high temperature[J]. Journal of Iron and Steel Research, 2024, 36(5): 650-659.


 


[27]Zhao Y. Understanding and design of metallic alloys guided by phasefield simulations[J]. NPJ Computational Materials, 2023, 9(1): 94.


 


[28]Jo S Y, Hong S, Han H N, et al. Modeling and simulation of steel rolling with microstructure evolution: An overview[J]. Steel Research International, 2023, 94(2): 2200260.


 


[29]Motallebi R, Savaedi Z, Mirzadeh H. Additive manufacturingA review of hot deformation behavior and constitutive modeling of flow stress[J]. Current Opinion In Solid State & Materials Science, 2022, 26(3): 100992.


 


[30]Irvine K J, Pickering F B. Lowcarbon bainitic steels[J]. Journal of the Iron and Steel Institute, 1957, 187: 292-309.


 


[31]钟云龙, 刘国权, 刘胜新, . 新型油井管钢33Mn2V的奥氏体晶粒长大规律[J]. 金属学报, 2003(7): 699-703.


 


Zhong Y L, Liu G Q, Liu S X, et al. Austenite grain growth behavior of steel 33Mn2V designed for oilwell tubes[J]. Acta Metallurgica Sinica, 2003(7): 699-703.


 


[32]毛卫民, 赵新兵. 金属的再结晶与晶粒长大[M]. 北京:冶金工业出版社, 1994.


 


Mao W M, Zhao X B. Recrystallization and Grain Growth of Metals[M]. Beijing:Metallurgical Industry Press, 1994.


 


[33]Devadas C, Samarasekera I V, Hawbolt E B. The thermal and metallurgical state of steel strip during hot rolling: Part III. Microstructural evolution[J]. Metallurgical Transactions A, 1991, 22(2): 335-349.


 


[34]Anelli E. Application trolled mathematical modelling to hot roiling and concooling of wire rods and bars of CMn[J]. ISIJ International, 1992, 32: 440-449.


 


[35]李伟, 陈文琳, 吴跃, . 42CrMo钢加热时奥氏体晶粒长大演化规律[J]. 材料热处理学报, 2015, 36(1): 104-108.


 


Li W, Chen W L, Wu Y, et al. Austenite grain growth behaviour of 42CrMo steel during heating[J]. Transactions of Materials and Heat Treatment, 2015, 36(1): 104-108.


 


[36]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.


 


[37]KhatamiHamedani H, ZareiHanzaki A, Abedi H R, et al. Dynamic restoration of the ferrite and austenite phases during hot compressive deformation of a lean duplex stainless steel[J]. Materials Science and Engineering: A, 2020, 788: 139400.


 


[38]Gwon H, Shin S, Jeon J, et al. Hot deformation behavior of V microalloyed TWIP steel during hot compression[J]. Metals and Materials International, 2019, 25(3): 594-605.


 


[39]Kumar S, Karmakar A, Nath S K. Comparative assessment on the hot deformation behaviour of 9Cr-1Mo steel with 1Cr-1Mo steel[J]. Metals and Materials International, 2021, 27(10): 3875-3890.


 


[40]骆刚. 42CrMo热塑性流变及动态再结晶行为研究[D]. 重庆:重庆大学, 2011.


 


Luo G. Study on Dynamic Recrystallization Behavior and Thermoplastic Flow Stress of 42CrMo Steel[D]. ChongqingChongqing University, 2011.


 


[41]肖凯, 陈拂晓. 铸态铅黄铜动态再结晶模型的建立[J]. 塑性工程学报, 2008(3): 132-137.


 


Xiao K, Chen F X. Modeling the dynamicrecrystallization of casting lead brass[J]. Journal of Plasticity Engineering, 2008(3): 132-137.


 


[42]代孟强, 桂在涛, 廖振成, . 42CrMoA钢动态再结晶行为研究[J]. 热处理, 2022, 37(2): 1-10, 14.


 


Dai M Q, Gui Z T, Liao Z C, et al. Research on dynamic recrystallization behavior of 42CrMoA steel[J]. Heat Treatment, 2022, 37(2): 1-10, 14.


 


[43]陈荣创, 张世阳, 邱泽旭, . 高强钢多道次热压缩晶粒尺寸模型[J]. 塑性工程学报, 2024,31(6): 113-124.


 


Chen R C, Zhang S Y, Qiu Z X, et al. Grain size model of highstrength steel in multipass hot compression[J]. Journal of Plasticity Engineering, 202431(6): 113-124.


 


[44]Lin Y C, Chen M S, Zhong J. Study of metadynamic recrystallization behaviors in a low alloy steel[J]. Journal of Materials Processing Technology, 2009, 209(5): 2477-2482.


 


[45]Lin Y C, Chen M S. Study of microstructural evolution during metadynamic recrystallization in a lowalloy steel[J]. Materials Science and Engineering: A, 2009, 501(1-2): 229-234.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9