[1]杨培文, 李洪涛, 杨锡运, 等. 风电机组技术现状分析及未来发展趋势预测[J]. 电力电子技术, 2020, 54(3): 79-82.
Yang P W, Li H T, Yang X Y, et al. Analysis of the present situation of wind turbine technology and forecast of future development trend[J]. Power Electronics, 2020, 54(3): 79-82.
[2]梁雅鑫, 蔡欣, 郑雷刚, 等. 二次回火对42CrMo4M钢组织性能的影响[J]. 材料热处理学报, 2023, 44(8): 106-114.
Liang Y X, Cai X, Zheng L G, et al. Effect of secondary tempering on microstructure and properties of 42CrMo4M steel [J]. Transactions of Materials and Heat Treatment,2023,44(8):106-114.
[3]付海成, 贺欢. 42CrMo4大截面主轴锻件热处理工艺及性能研究[J]. 一重技术, 2024(3): 22-27, 42.
Fu H C, He H. Research on heat treatment process and property of 42CrMo4 large section spindle forging[J]. CFHI Technology, 2024(3): 22-27, 42.
[4]韩蕾蕾, 徐志强, 杨树峰. 42CrMo4风电齿圈锻件内部裂纹形成原因及控制措施[J]. 连铸, 2024(2): 50-55.
Han L L, Xu Z Q, Yang S F. Formation causes and control measures of internal cracks in 42CrMo4 wind power gear ring forging[J]. Continuous Casting, 2024(2): 50-55.
[5]陈美成, 赵宇, 郭庆涛, 等. 42CrMo钢圆坯芯部热裂形成条件热模拟[J]. 中国冶金, 2023, 33(6): 65-72, 132.
Chen M C, Zhao Y, Guo Q T, et al. Thermal simulation of hot tearing formation conditions in center of 42CrMo steel round bloom[J]. China Metallurgy, 2023, 33(6): 65-72, 132.
[6]冯富春,洪慧平,肖玉.42CrMo4钢动态再结晶规律及动态再结晶模型研究[A]. 中国金属学会.第九届中国钢铁年会论文集[C].北京, 2013.
Feng F C, Hong H P, Xiao Y. Dynamic recrystallization rule and model of 42CrMo4 Steel[A]. Chinese Society of Metals. Proceedings of the 9th China Iron and Steel Annual Meeting[C]. Beijing, 2013.
[7]蔺永诚, 陈明松, 钟掘. 42CrMo钢静态再结晶晶粒尺寸模型[A]. 2008年中国机械工程学会年会暨甘肃省学术年会论文集[C].兰州, 2008.
Lin Y C, Chen M S, Zhong J. Modeling of static recrystallization grain size of 42CrMo steel[A]. Proceedings of the 2008 Annual Meeting of Chinese Mechanical Engineering Society and the Academic Annual Meeting of Gansu Province[C].Lanzhou, 2008.
[8]蔺永诚, 陈明松, 钟掘. 42CrMo钢形变奥氏体的静态再结晶[J]. 中南大学学报(自然科学版), 2009, 40(2): 411-416.
Lin Y C, Chen M S, Zhong J. Static recrystallization behaviors of deformed 42CrMo steel[J]. Journal of Central South University (Science and Technology), 2009, 40(2): 411-416.
[9]蔺永诚, 陈明松, 钟掘. 42CrMo钢亚动态再结晶行为研究[J]. 材料热处理学报, 2009, 30(2): 71-75.
Lin Y C, Chen M S, Zhong J. Investigation on metadynamic recrystallization behavior of 42CrMo steel[J]. Transactions of Materials and Heat Treatment, 2009, 30(2): 71-75.
[10]蔺永诚, 陈明松, 钟掘. 形变温度对42CrMo钢塑性成形与动态再结晶的影响[J]. 材料热处理学报, 2009, 30(1): 70-74.
Lin Y C, Chen M S, Zhong J. Effects of deformation temperatures on plastic formation and microstructure evolution of 42CrMo steel[J]. Transactions of Materials and Heat Treatment, 2009, 30(1): 70-74.
[11]李永堂, 齐会萍, 付建华, 等. 42CrMo钢铸造环坯辗扩成形理论与工艺分析[J]. 机械工程学报, 2014, 50(2): 77-85.
Li Y T, Qi H P, Fu J H, et al. Theoretical and process analyses on the castblank rolling forming of 42CrMo bearing rings[J]. Journal of Mechanical Engineering, 2014, 50(2): 77-85.
[12]Chen M S, Lin Y C, Ma X S. The kinetics of dynamic recrystallization of 42CrMo steel[J]. Materials Science and Engineering: A, 2012, 556: 260-266.
[13]Chen M S, Yuan W Q, Lin Y C, et al. Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method[J]. Vacuum, 2017, 146: 142-151.
[14]白丽琴, 孙宪进, 吴扬, 等. 42CrMo钢特厚椭圆坯轧制工艺数值模拟[J]. 中国冶金, 2024, 34(5): 106-113.
Bai L Q, Sun X J, Wu Y, et al. Numerical simulation for rolling process of ultraheavy elliptical billet of 42CrMo steel[J]. China Metallurgy, 2024, 34(5): 106-113.
[15]孙昊. TiB/TC25G合金热加工过程中的组织演变规律研究[D]. 合肥:中国科学技术大学, 2023.
Sun H. Microstructure Evolution of TiB/TC25G Alloy during Thermal Processing[D]. Hefei: University of Science and Technology of China, 2023.
[16]曹建国, 王天聪, 李洪波, 等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J]. 机械工程学报, 2016, 52(4): 90-96, 102.
Cao J G, Wang T C, Li H B, et al. Hightemperature constitutive relationship of nonoriented electrical steel based on modified Arrhenius model[J]. Journal of Mechanical Engineering, 2016, 52(4): 90-96, 102.
[17]Yu Z M, Peng W F, Zhang X, et al. Evolution of microstructure of aluminum alloy hollow shaft in cross wedge rolling without mandrel[J]. Journal of Central South University, 2022, 29(3): 807-820.
[18]康涛. 高强塑性中锰钢的制备工艺及组织性能调控研究[D]. 北京:北京科技大学, 2023.
Kang T. Study on Preparation Process and Microstructure and Property Control of Highstrengthplastic Medium Manganese Steel[D]. Beijing: University of Science and Technology Beijing, 2023.
[19]王凤琪, 于忠奇, 孟烨晖, 等. 复杂内筋铝筒段旋压变形规律和再结晶组织演变数值仿真[J]. 航空学报, 2023, 44(9): 92-102.
Wang F Q, Yu Z Q, Meng Y H, et al. Deformation mechanism and recrystallization microstructure evolution of aluminum stiffened cylinder during hot flow spinning based on numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9):92-102.
[20]税烺, 付建辉, 赖宇. Gh4065a镍基高温合金多道次压缩变形组织演变规律[J]. 锻压技术, 2023, 48(3): 244-254.
Shui L, Fu J H, Lai Y. Microstructure evolution laws of multipass compression deformation fornickelbase superalloy GH4065A[J], Forging & Stamping Technology, 2023, 48(3):244-254.
[21]李璐瑶, 任璐英, 闫钊鸣, 等. 变形态MggdY-znzr合金热处理微观组织演变规律与硬度研究[J]. 兵器装备工程学报, 2023, 44(10): 72-77.
Li L Y, Ren L Y, Yan Z M, et al. Effects of heat treatment processing on microstructure evolution and microhardness of deformed MgGdY-ZnZr alloys[J]. Joural of Ordnance Equipment Engineering, 2023, 44 (10):72-77.
[22]Song C, Cao J, Xiao J, et al. Hightemperature constitutive relationship involving phase transformation for nonoriented electrical steel based on PSODNN approach[J]. Materials Today Communications, 2023, 34: 105210.
[23]庄大勇, 任大为, 李洋, 等. Al-8.79Zn-2.16Mg-2.11Cu-0.12Zr合金的本构关系和微观组织演变[J]. 锻压技术, 2024, 46(6):239-248.
Zhuang D Y, Ren D W, Li Y, et al. Constitutive relationship and microstructure evolution of Al-8.79Zn-2.16Mg-2.11Cu-0.12Zr alloy[J]. Forging & Stamping Technology, 2024, 46(6):239-248.
[24]岑耀东, 陈林, 包喜荣, 等. 道岔贝氏体钢轨轧后冷却过程的弯曲变形及微观组织演变规律[J]. 机械工程学报, 2024,60(14):139-152.
Cen Y D, Chen L, Bao X R, et al. Bending deformation and microstructure evolution of bainite rail during cooling process after rolling[J]. Journal of Mechanical Engineering, 2024,60(14):139-152.
[25]赵焯雅, 孟令健, 林鹏, 等. TC4钛合金跨相区连续热压缩α相组织演变规律及织构形成机理[J].金属学报,2025,61(5):717-730.
Zhao Z Y, Meng L J, Lin P, et al. Microstructure evolution and texture formation mechanism of a phase during continuous throughtransus compression of TC4 titanium alloy[J]. Acta Metallurgica Sinica,2025,61(5):717-730.
[26]张艳, 黄光杰, 何杰, 等. Ea4t钢的高温动态软化模型及晶粒演化研究[J]. 钢铁研究学报, 2024, 36(5): 650-659.
Zhang Y, Huang G J, He J, et al. Study on dynamic softening model and grain evolution of EA4T axle steel at high temperature[J]. Journal of Iron and Steel Research, 2024, 36(5): 650-659.
[27]Zhao Y. Understanding and design of metallic alloys guided by phasefield simulations[J]. NPJ Computational Materials, 2023, 9(1): 94.
[28]Jo S Y, Hong S, Han H N, et al. Modeling and simulation of steel rolling with microstructure evolution: An overview[J]. Steel Research International, 2023, 94(2): 2200260.
[29]Motallebi R, Savaedi Z, Mirzadeh H. Additive manufacturingA review of hot deformation behavior and constitutive modeling of flow stress[J]. Current Opinion In Solid State & Materials Science, 2022, 26(3): 100992.
[30]Irvine K J, Pickering F B. Lowcarbon bainitic steels[J]. Journal of the Iron and Steel Institute, 1957, 187: 292-309.
[31]钟云龙, 刘国权, 刘胜新, 等. 新型油井管钢33Mn2V的奥氏体晶粒长大规律[J]. 金属学报, 2003(7): 699-703.
Zhong Y L, Liu G Q, Liu S X, et al. Austenite grain growth behavior of steel 33Mn2V designed for oilwell tubes[J]. Acta Metallurgica Sinica, 2003(7): 699-703.
[32]毛卫民, 赵新兵. 金属的再结晶与晶粒长大[M]. 北京:冶金工业出版社, 1994.
Mao W M, Zhao X B. Recrystallization and Grain Growth of Metals[M]. Beijing:Metallurgical Industry Press, 1994.
[33]Devadas C, Samarasekera I V, Hawbolt E B. The thermal and metallurgical state of steel strip during hot rolling: Part III. Microstructural evolution[J]. Metallurgical Transactions A, 1991, 22(2): 335-349.
[34]Anelli E. Application trolled mathematical modelling to hot roiling and concooling of wire rods and bars of CMn[J]. ISIJ International, 1992, 32: 440-449.
[35]李伟, 陈文琳, 吴跃, 等. 42CrMo钢加热时奥氏体晶粒长大演化规律[J]. 材料热处理学报, 2015, 36(1): 104-108.
Li W, Chen W L, Wu Y, et al. Austenite grain growth behaviour of 42CrMo steel during heating[J]. Transactions of Materials and Heat Treatment, 2015, 36(1): 104-108.
[36]Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[37]KhatamiHamedani H, ZareiHanzaki A, Abedi H R, et al. Dynamic restoration of the ferrite and austenite phases during hot compressive deformation of a lean duplex stainless steel[J]. Materials Science and Engineering: A, 2020, 788: 139400.
[38]Gwon H, Shin S, Jeon J, et al. Hot deformation behavior of V microalloyed TWIP steel during hot compression[J]. Metals and Materials International, 2019, 25(3): 594-605.
[39]Kumar S, Karmakar A, Nath S K. Comparative assessment on the hot deformation behaviour of 9Cr-1Mo steel with 1Cr-1Mo steel[J]. Metals and Materials International, 2021, 27(10): 3875-3890.
[40]骆刚. 42CrMo热塑性流变及动态再结晶行为研究[D]. 重庆:重庆大学, 2011.
Luo G. Study on Dynamic Recrystallization Behavior and Thermoplastic Flow Stress of 42CrMo Steel[D]. Chongqing:Chongqing University, 2011.
[41]肖凯, 陈拂晓. 铸态铅黄铜动态再结晶模型的建立[J]. 塑性工程学报, 2008(3): 132-137.
Xiao K, Chen F X. Modeling the dynamicrecrystallization of casting lead brass[J]. Journal of Plasticity Engineering, 2008(3): 132-137.
[42]代孟强, 桂在涛, 廖振成, 等. 42CrMoA钢动态再结晶行为研究[J]. 热处理, 2022, 37(2): 1-10, 14.
Dai M Q, Gui Z T, Liao Z C, et al. Research on dynamic recrystallization behavior of 42CrMoA steel[J]. Heat Treatment, 2022, 37(2): 1-10, 14.
[43]陈荣创, 张世阳, 邱泽旭, 等. 高强钢多道次热压缩晶粒尺寸模型[J]. 塑性工程学报, 2024,31(6): 113-124.
Chen R C, Zhang S Y, Qiu Z X, et al. Grain size model of highstrength steel in multipass hot compression[J]. Journal of Plasticity Engineering, 2024,31(6): 113-124.
[44]Lin Y C, Chen M S, Zhong J. Study of metadynamic recrystallization behaviors in a low alloy steel[J]. Journal of Materials Processing Technology, 2009, 209(5): 2477-2482.
[45]Lin Y C, Chen M S. Study of microstructural evolution during metadynamic recrystallization in a lowalloy steel[J]. Materials Science and Engineering: A, 2009, 501(1-2): 229-234.
|