[1]张洪奎,陈新建,王文革,等.径向锻造技术的应用[J].宝钢技术,2005(5):15-17.
Zhang H K, Chen X J, Wang W G,et al. Application of radial forging technology[J].Baosteel Technology,2005(5):15-17.
[2]杨震,王炳正,宋道春,等.径向锻造设备与工艺综述[J].锻压装备与制造技术,2018,53(6):27-30.
Yang Z, Wang B Z, Song D C, et al. A Review of radial forging equipment and technology[J]. China Metalforming Equipment & Manufacturing Technology, 2018, 53(6): 27-30.
[3]Zou J F,Ma L F, Jia W T, et al. Microstructural and mechanical response of ZK60 magnesium alloy subjected to radial forging[J]. Journal of Materials Science & Technology,2021,83(24):228-238.
[4]马鹏举,兰小龙,王文杰,等. 精锻机专用控制系统的设计与实现 [J]. 锻压技术,2023,48(2):149-160.
Ma P J, Lan X L, Wang W J, et al. Design and realization on special control system for precision forging press [J]. Forging & Stamping Technology, 2023, 48(2):149-160.
[5]胡宗式. 精锻钛合金棒材的锻透性[J].钛工业进展,2000(5):15-18.
Hu Z S. Forging penetration of titanium alloy bars [J]. Titanium Industry Progress, 2000(5):15-18.
[6]周旭东,戴晓珑,王国宜,等.基于刚塑性有限元的GFM精锻锻透性仿真[J].河南科技大学学报,2006,27(2):1-3.
Zhou X D, Dai X L, Wang G Y, et al. Simulation of GFM precision forging penetration based on rigid-plastic finite element method [J]. Journal of Henan University of Science and Technology, 2006, 27(2): 1-3.
[7]董节功,周旭东,高全德,等.径向锻造三维成形锻透性的数值模拟[J].机械工程材料,2007,31(3):76-78.
Dong J G, Zhou X D, Gao Q D, et al. Numerical simulation of threedimensional forging penetration in radial forging[J]. Mechanical Engineering Materials, 2007, 31(3): 76-78.
[8]栾谦聪.径向锻造工艺参数对锻透性的影响[J].中国机械工程,2014,25(22):3098-3103.
Luan Q C. The effect of radial forging process parameters on forging penetration[J]. China Mechanical Engineering, 2014, 25(22): 3098-3103.
[9]李汉,周旭东,郭俊峰,等.45钢轴类零件径向锻造的锻透性分析[J].热加工工艺,2014,43(19):125-130.
Li H, Zhou X D, Guo J F, et al. Analysis of forging penetration for 45 steel shaft parts in radial forging[J]. Hot Working Technology, 2014, 43(19): 125-130.
[10]孔永华,胡华斌,李龙,等. GH4169 合金不同锻造工艺的组织与性能[J]. 稀有金属材料与工程,2011(S2):225- 228.
Kong Y H, Hu H B, Li L, et al. GH4169 organization and performance of different forging processes of alloy [J]. Rare Metal Materials and Engineering, 2011 (S2): 225-228
[11]沈立华,胡革全,袁红军,等. 锻造温度对TA5 径向锻造棒材组织及性能的影响[J].热加工工艺,2022,51(11):95-97.
Shen L H, Hu G Q, Yuan H J, et al. The effect of forging temperature on the microstructure and properties of TA5 radial forging bars [J]. Hot Working Technology, 2022, 51(11): 95-97.
[12]邹景峰,马立峰.径锻压下率对镁棒热力参数及组织演变的影响[J].精密成形工程,2021,13(6):84-90.
Zou J F, Ma L F. The effect of forging reduction on the thermal parameters and microstructure evolution of magnesium rods [J]. Journal of Netshape Forming Engineering, 2021, 13(6): 84-90.
[13]张超,赵升吨,邢轲,等. 重卡传动轴用高强7075铝合金热流变行为及径向锻造微观组织演变[J].西安交通大学学报,2024,58(8):124-135.
Zhang C, Zhao S D, Xing K, et al. Thermal rheological behavior and radial forging microstructure evolution of highstrength 7075
aluminum alloy for heavy truck drive shafts [J]. Journal of Xi′an Jiaotong University, 2024, 58(8): 124-135.
[14]肖强,朱宁芳,李俊洪,等.径向锻造GH1016 合金圆棒晶粒不均匀的改善方法[J].塑性工程学报,2019,26(4):69-77.
Xiao Q, Zhu N F, Li J H, et al. Improvement method for grain inhomogeneity of radial forged GH1016 alloy rods [J]. Journal of Plasticity Engineering, 2019, 26(4): 69-77.
[15]曹中源.车轴用EA4T钢微观组织演化模型的构建及其在锻造工艺设计中的应用[D]. 上海:上海交通大学,2019.
Cao Z Y. Construction of Microstructure Evolution Model for EA4T Steel Used in Axle and Its Application in Forging Process Design[D].Shanghai: Shanghai Jiao Tong University, 2019.
[16]Timin V A.径向锻造时的塑性流动力学[J]. 锻压技术,1989,14(5):1-6.
Timin V A. Plastic flow dynamics during radial forging [J]. Forging & Stamping Technology, 1989,14(5):1-6.
[17]俞汉清,陈金德.金属塑性成型原理[M].北京:机械工业出版社,1999.
Yu H Q, Chen J D. Principles of Metal Plastic Forming [M]. Beijing: China Machine Press, 1999.
|