[1]冯毅,张德良,高翔,等. 面向新能源时代的汽车用钢EVI工程技术发展[J]. 汽车工艺与材料,2023(9):8-15.
Feng Y,Zhang D L,Gao X,et al. Development of EVI engineering technologies for automotive steel in the new energy era [J]. Automobile Technology & Material, 2023(9): 8-15.
[2]张铁国,刘旭辉,黑中垒,等. 汽车碰撞安全的影响因素分析[J]. 时代汽车,2023(12):193-195.
Zhang T G,Liu X H,Hei Z L,et al. Analysis of influencing factors of automobile collision safety [J]. Auto Time, 2023(12): 193-195.
[3]王彦婷,刘海娜,王凯.基于HyperMesh应变速率对零件材料性能影响分析[J].机械设计与制造,2024(6):242-245.
Wang Y T,Liu H N,Wang K. Effect of strain rate on material properties of carbody parts based on HyperMesh [J]. Machinery Design & Manufacture,2024(6):242-245.
[4]董振通,孟宪明,管建军,等.双相钢HC420/780DP动态力学性能及其本构模型研究[J].辽宁石油化工大学学报,2023,43(1):61-66.
Dong Z T,Meng X M,Guan J J,et al. Dynamic mechanical properties and constitutive model of double phase steel HC420/780DP [J]. Journal of Liaoning Petrochemical University,2023,43(1):61-66.
[5]刘培星.CR1500HF热成形钢U形件不同位置的高速拉伸性能及其有限元模拟[J].机械工程材料, 2021, 45(5): 96-99,104.
Liu P X. High-speed tensile properties and their finite element simulation at different positions of CR1500HF hot-forming steel U-shaped parts [J]. Materials for Mechanical Engineering, 2021, 45(5):96-99,104.
[6]张伟,潘跃,刘华赛,等. 应变速率对增强成形性双相钢性能影响分析[J]. 钢铁,2022,57(4):123-129.
Zhang W,Pan Y,Liu H S,et al. Effect of strain rate on properties of dual phase steel with high formability [J]. Iron and Steel,2022,57(4):123-129.
[7]董刘颖,李秋梅,马龙飞,等.应变速率对6082铝合金拉伸性能及断口形貌的影响[J].热处理技术与装备,2020,41(2):14-17.
Dong L Y,Li Q M,Ma L F,et al. Effect of strain rate on tensile properties and fracture morphology of 6082 aluminum alloy [J]. Heat Treatment Technology and Equipment, 2020, 41(2): 14-17.
[8]于沛,夏卿.相变诱导塑性钢高应变速率性能和失效行为分析[J].锻压技术,2023,48(4):256-264.
Yu P, Xia Q. Analysis on high strain rate properties and failure behavior of transformation induced plasticity steel [J]. Forging & Stamping Technology,2023,48(4):256-264.
[9]韩赟,邱木生,邹英,等. 高塑性应变比Ti-IF钢组织性能及析出相[J]. 钢铁,2021,56(3):77-83.
Han Y, Qiu M S, Zou Y, et al. Precipitates,microstructure and properties of Ti-IF steel with high plastic strain ratio [J]. Iron and Steel,2021,56(3):77-83.
[10]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature test [S].
[11]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统[S].
GB/T 30069.2—2016,Metallic material—Tensile testing at high strain rates—Part 2:Servo-hydraulic and other test systems[S].
[12]刘海娜,梅运东,刘领兵. 应变速率对低合金高强钢性能的影响[J].锻压技术, 2023, 48(6):253-257.
Liu H N,Mei Y D,Liu L B. Influence of strain rate on properties for low alloy high strength steel [J]. Forging & Stamping Technology, 2023, 48(6):253-257.
[13]张伟,李春光,韩赟,等. 高强双相钢动态力学本构模型对比分析[J]. 塑性工程学报,2021,28(6):75-82.
Zhang W,Li C G,Han Y,et al. Comparative analysis of dynamic mechanical constitutive model of high strength dual phase steel [J]. Journal of Plasticity Engineering, 2021, 28(6): 75-82.
[14]苑文婧,刘晓航,田浩彬,等. 应变速率对HC340LA低合金高强度钢板拉伸性能的影响[J]. 机械工程材料,2015,39(8):91-93.
Yuan W J,Liu X H,Tian H B,et al. Effects of strain rate on tensile properties of high strength low alloy steel plate HC340LA [J]. Materials for Mechanical Engineering, 2015, 39(8):91-93.
[15]张鹏,徐飞越,李兵,等.温成形对QP980钢板力学行为及微观组织演变的影响[J].锻压技术,2024,49(5):53-60.
Zhang P, Xu F Y, Li B, et al. Effect of warm forming on mechanical behavior and microstructure evolution of QP980 steel plate [J]. Forging & Stamping Technology, 2024, 49(5):53-60.
[16]董丹阳,刘杨,王磊,等.应变速率对DP780钢动态拉伸变形行为的影响[J].金属学报,2013,49(2):159-166.
Dong D Y, Liu Y, Wang L, et al. Effect of strain rate on dynamic deformation behavior of DP780 steel[J]. Acta Metallurgica Sinica,2013,49(2):159-166.
|