[1]杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2): 129-147.
Yang R. Advances and challenges of TiAl base alloys[J]. Acat Metallurgica Sinica, 2015, 51(2): 129-147.
[2]陈玉勇, 孔凡涛. TiAl基合金新材料研究及精密成形[J]. 金属学报, 2002, 38(11): 1141-1148.
Chen Y Y, Kong F T. Research on TiAl based alloys materials and precision forming[J]. Acat Metallurgica Sinica, 2002, 38(11): 1141-1148.
[3]Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nature Materials, 2016, 15(8): 876-881.
[4]Attar H, Ehtemam-Haghighi S, Kent D,et al. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review[J]. International Journal of Machine Tools & Manufacture, 2018, 133: 85-102.
[5]Xu R R, Li M Q, Zhao Y H. A review of microstructure control and mechanical performance optimization of γ-TiAl alloys[J]. Journal of Alloys and Compounds, 2023, 932: 167611.
[6]Xi X X, Ding W F, Wu Z X, et al. Performance evaluation of creep feed grinding of γ-TiAl intermetallics with electroplated diamond wheels[J]. Chinese Journal of Aeronautics, 2021, 34(6): 100-109.
[7]寇宏超, 程亮, 唐斌, 等. 高温TiAl合金热成形技术研究进展[J].航空制造技术, 2016, 59(21): 24-31.
Kou H C,Cheng L,Tang B,et al. Progress on hot-forming techniques of high temperature TiAl alloys[J]. Aeronautical Manufacturing Technology, 2016, 59(21): 24-31.
[8]Kim Y K, Hong J K, Lee K A. Enhancing the creep resistance of electron beam melted gamma Ti-48Al-2Cr-2Nb alloy by using two-step heat treatment[J]. Intermetallics, 2020, 121: 106771.
[9]张琛, 杨森, 颜银标. TiAl基合金成形技术的研究现状[J]. 兵器材料科学与工程, 2017, 40(4): 126-132.
Zhang C, Yang S, Yan Y B. Research progress in manufacturing of TiAl alloys[J]. Ordnance Material Science and Engineering, 2017, 40(4): 126-132.
[10]贾平平. TiAl-Nb基合金高温抗氧化研究进展[J]. 表面技术, 2018, 47(3): 224-230.
Jia P P. High-temperature antioxidation of TiAl-Nb based alloys[J]. Surface Technology, 2018, 47(3): 224-230.
[11]邱翠榕. 热处理温度对内燃机用Ti-42.5Al-4Nb-1Mo-0.2B合金组织的影响[J]. 稀有金属与硬质合金, 2018, 46(6): 47-50.
Qiu C R. Effect of heat treatment temperature on microstructure of Ti-42.5Al-4Nb-1Mo-0.2B alloy for internal combustion engine[J]. Rare Metals and Cemented Carbides, 2018, 46(6): 47-50.
[12]李涌泉, 杜晓娟, 周友世, 等. 显微组织对TiAl合金抗热冲击性能的影响[J]. 热加工工艺, 2017, 46(10): 57-59.
Li Y Q, Du X J, Zhou Y S, et al. Effects of microstructure on thermal shock resistance of TiAl alloy[J]. Hot Working Technology, 2017, 46(10): 57-59.
[13]包春玲, 谢华生, 赵军,等. 热等静压处理对铸造Ti-48Al-2Cr-2Nb合金组织和力学性能的影响[J]. 铸造, 2017, 64(1): 64-66.
Bao C L, Xie H S, Zhao J,et al. Effects of HIP on microstructure and mechanical properties of cast Ti-48Al-2Cr-2Nb alloy[J]. Foundry, 2017, 64(1): 64-66.
[14]Li H Z, Qi Y L, Liang X P, et al. Microstructure and high temperature mechanical properties of powder metallurgical Ti-45Al-7Nb-0.3W alloy sheets[J]. Materials & Design, 2016, 106: 90-97.
[15]Huang L, Li C M, Li C L, et al. Research progress on microstructure evolution and hot processing maps of high strength β alloys during hot deformation[J]. Transactions of Nonferrous Metals Society of China, 2022, 32 (12): 3835-3859.
[16]Li C M, Huang L, Zhao M J, et al. Hot deformation behavior and mechanism of a new metastable β alloy Ti-6Cr-5Mo-5V-4Al in single phase region[J]. Materials Science and Engineering: A, 2021, 814: 141231.
[17]Gupta A, Khatirkar R, Singh J. A review of microstructure and texture evolution during plastic deformation and heat treatment of β-Ti alloys[J]. Journal of Alloys and Compounds, 2022, 899: 163242.
[18]王绍灼, 孟晗, 王芬, 等. 难变形钛合金的锻造缺陷及预防[J]. 锻压技术, 2024, 49 (2): 45-52.
Wang S Z, Meng H, Wang F, et al. Forging defects and prevention on difficult-to-deform titanium alloy[J]. Forging & Stamping Technology, 2024, 49(2): 45-52.
[19]毛敏, 栾佰峰, 李飞涛, 等. β-T51Z 合金的热变形行为与组织演变研究[J]. 稀有金属材料与工程, 2020, 49(4): 1211-1219.
Mao M, Luan B F, Li F T, et al. Hot deformation behavior and microstructure evolution of β-T51Z alloy[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1211-1219.
[20]姜森宝, 王宇盛, 陈瑶, 等. Ti2AlNb轧板激光弯曲工艺及微观组织研究[J]. 锻压技术, 2024, 49 (5): 61-66.
Jiang S B, Wang Y S, Chen Y, et al. Research on laser bending process and microstructure for Ti2AlNb rolled sheet[J]. Forging & Stamping Technology, 2024, 49(5): 61-66.
[21]汪大年. 金属塑性成形原理[M]. 北京:机械工业出版社, 1982.
Wang D N. Principles of Metal Plastic Forming[M]. Beijing:China Machine Press, 1982.
[22]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892.
[23]Li N, Zhao C Z, Jiang Z H, et al. Flow behavior and processing maps of high-strength low-alloy steel during hot compression[J]. Materials Characterization, 2019, 153: 224-233.
[24]任书杰, 王克鲁, 鲁世强, 等. TiAl合金的物理本构模型与加工图[J]. 中国有色金属学报, 2020, 30(6): 1289-1296.
Ren S J, Wang K L, Lu S Q, et al. Physical constitutive model and processing map of TiAl alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1289-1296.
[25]Kumar V A, Gupta R K, Murty S V S N, et al. Hot workability and microstructure control in Co20Cr15W10Ni cobalt-based superalloy[J]. Journal of Alloys and Compounds, 2016, 676: 527-541.
[26]Sivakesavam O, Prasad Y V R K. Characteristics of superplasticity domain in the processing map for hot working of as-cast Mg-11.5Li-1.5Al alloy[J]. Materials Science and Engineering: A, 2002, 323(1-2): 270-277.
[27]董显娟, 张殿, 王宇航, 等. 热变形参数对TB15钛合金动态再结晶行为的影响[J].塑性工程学报, 2024, 31(1): 50-59.
Dong X J, Zhang D, Wang Y H, et al. Influence of thermal deformation parameters on dynamic recrystallisation behaviour of TB15 titanium alloy[J]. Journal of Plasticity Engineering, 2024, 31(1): 50-59.
|