网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ti4822钛铝合金热塑性变形行为
英文标题:Thermoplastic deformation behavior of Ti4822 TiAl alloy
作者:朱传志1 王晓卓2 范开斌1 刘宁1 李雅兵1 刘谊1 陈镪1 
单位:1. 中国航发动力股份有限公司 陕西 西安 710021 2. 海军装备部 陕西 西安 710000 
关键词:Ti4822钛铝合金 变形温度 应变速率 流动软化 动态再结晶 
分类号:TG142.1
出版年,卷(期):页码:2025,50(6):241-248
摘要:

在热变形温度为1000~1200 ℃、应变速率为0.001~0.1 s-1、压缩变形量为30%和60%的条件下,采用热压缩模拟设备对Ti4822钛铝合金材料进行了恒温塑性变形研究。基于实验数据构建了Ti4822钛铝合金的Prasad失稳判据热加工图,重点探讨了30%和60%变形量下,不同热变形温度对材料动态再结晶演变规律的作用机制。结果表明:Ti4822钛铝合金变形量为30%时的适宜热变形温度为1120~1175 ℃、应变速率为0.001 s-1和热变形温度为1150~1180 ℃、应变速率为0.1 s-1;变形量为60%时的适宜热变形温度为1145~1160 ℃、应变速率为0.1 s-1。热变形温度对Ti4822钛铝合金的流动软化程度影响更加明显,其对Ti4822钛铝合金动态再结晶影响程度大于应变速率。

The isothermal plastic deformation of Ti4822 TiAl alloy was studied by a hot compression simulation device under the conditions of the hot deformation temperature of 1000-1200 ℃, the strain rate of 0.001-0.1 s-1, and the compression deformation amount of 30% and 60%. Then, based on the experimental data, the hot processing map of Prasad instability criterion for Ti4822 TiAl alloy was constructed, and the mechanism for the influence of different hot deformation temperatures on the dynamic recrystallization evolution law of material under the deformation amounts of 30% and 60% was discussed in detail. The results indicate that when the deformation amount of Ti4822 TiAl alloy is 30%, the suitable processing temperature is 1120-1175 ℃ and the strain rate is 0.001 s-1, as well as the suitable processing temperature is 1150-1180 ℃ and the strain rate is 0.1 s-1. When the deformation amount of Ti4822 TiAl alloy is 60%, the suitable processing temperature is 1145-1160 ℃ and the strain rate is 0.1 s-1. Thus, the influence of hot deformation temperature on the flow softening degree of Ti4822 TiAl alloy is more obvious, and its influence on the dynamic recrystallization of Ti4822 TiAl alloy is greater than that of strain rate.

基金项目:
作者简介:
作者简介:朱传志(1991-),男,博士,高级工程师,E-mail:whdd1991@163.com
参考文献:

[1]杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2): 129-147.


 

Yang R. Advances and challenges of TiAl base alloys[J]. Acat Metallurgica Sinica, 2015, 51(2): 129-147.

 

[2]陈玉勇, 孔凡涛. TiAl基合金新材料研究及精密成形[J]. 金属学报, 2002, 38(11): 1141-1148.

 

Chen Y Y, Kong F T. Research on TiAl based alloys materials and precision forming[J]. Acat Metallurgica Sinica, 2002, 38(11): 1141-1148.

 

[3]Chen G, Peng Y B, Zheng G, et al. Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nature Materials, 2016, 15(8): 876-881.

 

[4]Attar H, Ehtemam-Haghighi S, Kent D,et al. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review[J]. International Journal of Machine Tools & Manufacture, 2018, 133: 85-102.

 

[5]Xu R R, Li M Q, Zhao Y H. A review of microstructure control and mechanical performance optimization of γ-TiAl alloys[J]. Journal of Alloys and Compounds, 2023, 932: 167611.

 

[6]Xi X X, Ding W F, Wu Z X, et al. Performance evaluation of creep feed grinding of γ-TiAl intermetallics with electroplated diamond wheels[J]. Chinese Journal of Aeronautics, 2021, 34(6): 100-109.

 

[7]寇宏超, 程亮, 唐斌, 等. 高温TiAl合金热成形技术研究进展[J].航空制造技术, 2016, 59(21): 24-31.

 

Kou H C,Cheng L,Tang B,et al. Progress on hot-forming techniques of high temperature TiAl alloys[J]. Aeronautical Manufacturing Technology, 2016, 59(21): 24-31.

 

[8]Kim Y K, Hong J K, Lee K A. Enhancing the creep resistance of electron beam melted gamma Ti-48Al-2Cr-2Nb alloy by using two-step heat treatment[J]. Intermetallics, 2020, 121: 106771.

 

[9]张琛, 杨森, 颜银标. TiAl基合金成形技术的研究现状[J]. 兵器材料科学与工程, 2017, 40(4): 126-132.

 

Zhang C, Yang S, Yan Y B. Research progress in manufacturing of TiAl alloys[J]. Ordnance Material Science and Engineering, 2017, 40(4): 126-132.

 

[10]贾平平. TiAl-Nb基合金高温抗氧化研究进展[J]. 表面技术, 2018, 47(3): 224-230.

 

Jia P P. High-temperature antioxidation of TiAl-Nb based alloys[J]. Surface Technology, 2018, 47(3): 224-230.

 

[11]邱翠榕. 热处理温度对内燃机用Ti-42.5Al-4Nb-1Mo-0.2B合金组织的影响[J]. 稀有金属与硬质合金, 2018, 46(6): 47-50.

 

Qiu C R. Effect of heat treatment temperature on microstructure of Ti-42.5Al-4Nb-1Mo-0.2B alloy for internal combustion engine[J]. Rare Metals and Cemented Carbides, 2018, 46(6): 47-50.

 

[12]李涌泉, 杜晓娟, 周友世, 等. 显微组织对TiAl合金抗热冲击性能的影响[J]. 热加工工艺, 2017, 46(10): 57-59.

 

Li Y Q, Du X J, Zhou Y S, et al. Effects of microstructure on thermal shock resistance of TiAl alloy[J]. Hot Working Technology, 2017, 46(10): 57-59.

 

[13]包春玲, 谢华生, 赵军,等. 热等静压处理对铸造Ti-48Al-2Cr-2Nb合金组织和力学性能的影响[J]. 铸造, 2017, 64(1): 64-66.

 

Bao C L, Xie H S, Zhao J,et al. Effects of HIP on microstructure and mechanical properties of cast Ti-48Al-2Cr-2Nb alloy[J]. Foundry, 2017, 64(1): 64-66.

 

[14]Li H Z, Qi Y L, Liang X P, et al. Microstructure and high temperature mechanical properties of powder metallurgical Ti-45Al-7Nb-0.3W alloy sheets[J]. Materials & Design, 2016, 106: 90-97.

 

[15]Huang L, Li C M, Li C L, et al. Research progress on microstructure evolution and hot processing maps of high strength β alloys during hot deformation[J]. Transactions of Nonferrous Metals Society of China, 2022, 32 (12): 3835-3859.

 

[16]Li C M, Huang L, Zhao M J, et al. Hot deformation behavior and mechanism of a new metastable β alloy Ti-6Cr-5Mo-5V-4Al in single phase region[J]. Materials Science and Engineering: A, 2021, 814: 141231.

 

[17]Gupta A, Khatirkar R, Singh J. A review of microstructure and texture evolution during plastic deformation and heat treatment of β-Ti alloys[J]. Journal of Alloys and Compounds, 2022, 899: 163242.

 

[18]王绍灼, 孟晗, 王芬, 等. 难变形钛合金的锻造缺陷及预防[J]. 锻压技术, 2024, 49 (2): 45-52.

 

Wang S Z, Meng H, Wang F, et al. Forging defects and prevention on difficult-to-deform titanium alloy[J]. Forging & Stamping Technology, 2024, 49(2): 45-52.

 

[19]毛敏, 栾佰峰, 李飞涛, 等. β-T51Z 合金的热变形行为与组织演变研究[J]. 稀有金属材料与工程, 2020, 49(4): 1211-1219.

 

Mao M, Luan B F, Li F T, et al. Hot deformation behavior and microstructure evolution of β-T51Z alloy[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1211-1219.

 

[20]姜森宝, 王宇盛, 陈瑶, 等. Ti2AlNb轧板激光弯曲工艺及微观组织研究[J]. 锻压技术, 2024, 49 (5): 61-66.

 

Jiang S B, Wang Y S, Chen Y, et al. Research on laser bending process and microstructure for Ti2AlNb rolled sheet[J]. Forging & Stamping Technology, 2024, 49(5): 61-66.

 

[21]汪大年. 金属塑性成形原理[M]. 北京:机械工业出版社, 1982.

 

Wang D N. Principles of Metal Plastic Forming[M]. Beijing:China Machine Press, 1982.

 

[22]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892. 

 

[23]Li N, Zhao C Z, Jiang Z H, et al. Flow behavior and processing maps of high-strength low-alloy steel during hot compression[J]. Materials Characterization, 2019, 153: 224-233. 

 

[24]任书杰, 王克鲁, 鲁世强, 等. TiAl合金的物理本构模型与加工图[J]. 中国有色金属学报, 2020, 30(6): 1289-1296. 

 

Ren S J, Wang K L, Lu S Q, et al. Physical constitutive model and processing map of TiAl alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(6): 1289-1296.

 

[25]Kumar V A, Gupta R K, Murty S V S N, et al. Hot workability and microstructure control in Co20Cr15W10Ni cobalt-based superalloy[J]. Journal of Alloys and Compounds, 2016, 676: 527-541.

 

[26]Sivakesavam O, Prasad Y V R K. Characteristics of superplasticity domain in the processing map for hot working of as-cast Mg-11.5Li-1.5Al alloy[J]. Materials Science and Engineering: A, 2002, 323(1-2): 270-277.

 

[27]董显娟, 张殿, 王宇航, 等. 热变形参数对TB15钛合金动态再结晶行为的影响[J].塑性工程学报, 2024, 31(1): 50-59.

 

Dong X J, Zhang D, Wang Y H, et al. Influence of thermal deformation parameters on dynamic recrystallisation behaviour of TB15 titanium alloy[J]. Journal of Plasticity Engineering, 2024, 31(1): 50-59.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9