网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
变形温度对GH4742高温合金γ′相的影响
英文标题:Influence of deformation temperature on γ′ phases for superalloy GH4742
作者:王玉龙1 王松辉1 2 3 苏海1 徐东1 葛金锋1 奚晓1 黄常勋1 罗通1 王文珂4 任彩霞1 
单位:1.中航工业贵州安大航空锻造有限责任公司 贵州 安顺 561005 2. 贵州科学院 贵州 贵阳 550001 3. 中国科学院金属研究所 辽宁 沈阳 110016 4. 哈尔滨工业大学 材料科学与工程学院 黑龙江 哈尔滨 150001 
关键词:GH4742高温合金 变形参数 γ′相 析出行为 定量表征 
分类号:TG306
出版年,卷(期):页码:2025,50(6):234-240
摘要:

采用Gleeble-3500试验机对GH4742高温合金进行了等温恒应变速率压缩实验。结果表明:来料状态的γ′相呈现3种形貌尺寸。当应变速率较小(0.001 s-1)时,γ′I和γ′II相在温度≥1090 ℃时完全溶解,γ′III相在≤1020 ℃时完全溶解。在950~1020 ℃时,γ′I相的等效直径和体积分数随着温度的升高而增大,但升高至1055 ℃时又有所下降。在950~1055 ℃时,γ′II相的等效直径随着温度的升高而下降,但体积分数变化不大。新析出γ′III相的等效直径在1055~1160 ℃时变化不大。当应变速率较大(1 s-1)时,影响规律与0.001 s-1时大致相同,但γ′II相完全溶解的温度降至1055 ℃,且新析出γ′III相的体积分数较0.001 s-1时有所增加。为充分溶解γ′相以降低变形抗力,GH4742高温合金的始锻温度以不低于1090 ℃为宜。

Isothermal constant strain rate compression experiments were conducted on superalloy GH4742 by using simulator Gleeble-3500. The results show that γ′ phases of as-received materials exhibits three morphology sizes. When the strain rate is small (0.001 s-1), γ′I and γ′II phases are completely dissolved at the temperature greater than or equal to 1090 ℃, γ′III phase is completely dissolved at the temperature less than or equal to 1020 ℃. The equivalent diameter and volume fraction of γ′I phase increase with the increasing of temperature from 950 ℃ to 1020 ℃, but decrease when it rises to 1055 ℃. The equivalent diameter of γ′II phase decreases with the increasing of temperature from 950 ℃ to 1055 ℃, but the volume fraction does not change much. The equivalent diameter of the newly precipitated γ′III phase does not change much from 1055 ℃ to 1160 ℃. When the strain rate is large (1 s-1), the influence law is roughly the same as that at 0.001 s-1, except that the temperature at which γ′II phase is completely dissolved drops to 1055 ℃, and the volume fraction of the newly precipitated γ′III phase increases compared with that at 0.001 s-1. Thus, in order to fully dissolve γ′ phase to reduce deformation resistance, the initial forging temperature of superalloy GH4742 should be no lower than 1090 ℃.

基金项目:
新材料重大专项项目(2024ZD0600100);贵州省高层次创新型人才项目(GCC[2023]098);贵州省科技计划项目(CXTD[2023]009,ZZSG[2024]016,[2023]一般278);安顺市“两城三基地”青年科技人才培养项目(安市科人[2024]3号)
作者简介:
作者简介:王玉龙(1981-),男,学士,工程师,E-mail:32154545@qq.com;通信作者:王松辉(1991-),男,博士,高级工程师,E-mail:wangsonghui91@126.com
参考文献:

[1]李应隆, 曾梦婷, 谭元标, 等. 应变量对细晶Inconel 718高温合金热变形组织演变的影响 [J]. 稀有金属, 2023, 47(6): 807-814.


 

Li Y L, Zeng M T, Tan Y B, et al. Microstructure evolution of Inconel 718 superalloy with fine-grains at different strain during hot deformation[J]. Chinese Journal of Rare Metals,2023, 47(6): 807-814.

 

[2]王妙全, 田成刚, 徐瑶, 等. GH4169D 高温合金锻件持久寿命的影响因素研究 [J]. 锻压技术, 2023, 48 (1): 46-52.

 

Wang M Q, Tian C G, Xu Y, et al. Study on influencing factors of rupture life for superalloy GH4169D forgings [J]. Forging & Stamping Technology, 2023, 48 (1): 46-52.

 

[3]Xu H, Yang S F, Wang E H, et al. Cognition on oxidation behavior of Ni-based superalloy GH4742 when exposed to water vapor [J]. Journal of Materials Science & Technology, 2024, 174: 15-22.

 

[4]Yang S L, Tian Q, Yang S F, et al. Study on the nucleation mechanism of carbonitrides on LaAlO3 in GH4742 superalloy [J]. Journal of Materials Research and Technology, 2023, 26: 5309-5320.

 

[5]《中国航空材料手册》编辑委员会. 中国航空材料手册(第2卷)[M]. 北京: 中国标准出版社, 2002.

 

Editorial Committee of China Aviation Materials Manual. China Aviation Materials Manual (Volume 2) [M]. Beijing: Standards Press of China, 2002.

 

[6]李红宇, 宋西平, 王艳丽, 等. GH742中γ′相和γ基体成分随时效时间和温度的变化规律研究 [J]. 材料工程, 2009(7): 12-15. 

 

Li H Y, Song X P, Wang Y L, et al. Dependence of composition of γ′/γ phases on aging time and temperature in superalloy GH742 [J]. Journal of Materials Engineering, 2009(7): 12-15.

 

[7]张文文. 热加工过程 GH4742 合金析出相演化及其影响研究 [D]. 秦皇岛: 燕山大学, 2023.

 

Zhang W W. Study on the Evolution and Effect of Precipitates in GH4742 Alloy During Hot Working [D]. Qinhuangdao: Yanshan University, 2023.

 

[8]Li H Y, Song X P, Wang Y L, et al. Coarsening and age hardening behaviors of γ′ particles in GH742 during high temperature treatment [J]. Journal of Iron and Steel Research International, 2009, 16(5): 81-86.

 

[9]秦鹤勇, 李振团, 赵光普, 等. 固溶温度对GH4742合金力学性能及γ′相的影响 [J]. 材料研究学报, 2023, 37(7): 502-510.

 

Qin H Y, Li Z T, Zhao G P, et al. Effect of solution temperature on mechanical properties and γ′ phase of GH4742 superalloy [J]. Chinese Journal of Materials Research, 2023, 37(7): 502-510.

 


[10]Tian Q, Zhang W W, Du J H, et al. Growth and dissolution behavior and morphology evolution of γ′ precipitates in GH4742 nickel-based superalloy [J]. Journal of Materials Research and Technology, 2024, 32: 4198-4211.

 

[11]Anderson M J, Schulz F, Lu Y, et al. On the modelling of precipitation kinetics in a turbine disc nickel based superalloy [J]. Acta Materialia, 2020, 191: 81-100.

 

[12]秦鹤勇, 李振团, 赵光普, 等. 锻态GH4742合金的热变形行为及组织性能演变 [J]. 稀有金属材料与工程, 2022, 51 (11): 4227-4236.

 

Qin H Y, Li Z T, Zhao G P, et al. Hot deformation behavior and microstructure and mechanical properties evolution of forged GH4742 superalloy [J]. Rare Metal Materials and Engineering, 2022, 51 (11): 4227-4236.

 

[13]Huang K, Marthinsen K, Zhao Q L, et al. The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials [J]. Progress in Materials Science, 2018, 92: 284-359.

 

[14]Masoumi F, Jahazi M, Shahriari D, et al. Coarsening and dissolution of γ′ precipitates during solution treatment of AD730TM Ni-based superalloy: Mechanisms and kinetics models [J]. Journal of Alloys and Compounds, 2016, 658: 981-995.

 

[15]Li M Z, Coakley J, Isheim D, et al. Influence of the initial cooling rate from γ′ supersolvus temperatures on microstructure and phase compositions in a nickel superalloy [J]. Journal of Alloys and Compounds, 2018, 732: 765-776.

 

[16]Tian G F, Jia C C, Wen Y, et al. Effect of solution cooling rate on the γ′ precipitation behaviors of a Ni-base P/M superalloy [J]. Journal of University of Science and Technology Beijing, 2008, 15(6): 729-734.

 

[17]杜强. GH4742合金热加工过程组织演变规律研究 [D]. 秦皇岛: 燕山大学, 2022.

 

Du Q. Study on Microstructure Evolution of GH4742 Alloy During Hot Processing [D]. Qinhuangdao: Yanshan University, 2022.

 

[18]于保宁, 郭锐涛, 徐航涛, 等. 铸态Cr5钢热变形行为及热加工图的研究 [J]. 锻压技术, 2023, 48 (4): 236-241.

 

Yu B N, Guo R T, Xu H T, et al. Study on thermal deformation behavior and thermal processing map of as-cast Cr5 steel [J]. Forging & Stamping Technology, 2023, 48 (4): 236-241.

 

[19]Mahmoudi M, Aboutalebi M R, Moshaver H, et al. An investigation on unstable flow during hot deformation of Inconel X750 superalloy using 3D processing map and shear band formation criterion [J]. Journal of Alloys and Compounds, 2025, 1010: 177207.

 

[20]Mitchell R J, Hardy M C, Preuss M, et al. Development of γ′ morphology in P/M rotor disc alloys during heat treatment [A]. Green K A, Harada H, Howson T E, et al. International Symposium on Superalloys 2004 [C]. Champion, Pennsylvania: TMS, 2004.

 

[21]Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720Li [J]. Metallurgical and Materials Transactions A, 2001, 32: 2441-2452.

 

[22]周宣, 李宇力, 马腾飞, 等. FGH97合金连续冷却过程中γ′相的析出行为 [J]. 稀有金属材料与工程, 2020, 49 (6): 2147- 2153. 

 

Zhou X, Li Y L, Ma T F, et al. Precipitation behavior of γ′ in superalloy FGH97 during continuous cooling from supersolvus temperature [J]. Rare Metal Materials and Engineering, 2020, 49 (6): 2147-2153.

 

[23]Fuchs G E. Solution heat treatment response of a third generation single crystal Ni-base superalloy [J]. Materials Science and Engineering A, 2001, 300: 52-60.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9