[1]周会军.支承辊材料Cr5钢的热变形行为及微观组织仿真技术研究[D].洛阳:河南科技大学,2015.
Zhou H J. Study on Hot Deformation Behavior of Cr5 Steel and Microstructure Simulation Technology for Heavy Backup Roll Hot Forging Process [D]. Luoyang: Henan University of Science and Technology, 2015.
[2]元亚莎.Cr5钢支承辊最终热处理组织和性能的研究 [D].洛阳:河南科技大学,2015.
Yuan Y S. Analysis of Ultimate Heat Treatment on Microstructure and Properties of Cr5 Steel Back-up Roll [D]. Luoyang: Henan University of Science and Technology, 2015.
[3]陈学文,郭未昀,周旭东.轧辊用Cr5钢静态再结晶行为及元胞自动机模拟 [J]. 材料热处理学报,2018,39(6):124-132.
Chen X W, Guo W Y, Zhou X D. Static recrystallization behavior and cellular automaton simulation of Cr5 steel for roller [J]. Transactions of Materials and Heat Treatment, 2018,39(6):124-132.
[4]李颖,杜帅,李敏,等. Cr5钢的热加工性能分析 [J].塑性工程学报,2022,29(12):151-161.
Li Y, Du S, Li M, et al. Analysis of hot working performance of Cr5 steel [J]. Journal of Plasticity Engineering, 2022,29(12):151-161.
[5]郭未昀,周旭东,陈学文.大型冷轧辊Cr5钢的静态再结晶行为及其动力学模型 [J].金属热处理,2018,43(7):33-39.
Guo W Y, Zhou X D, Chen X W. Static recrystallization behavior and dynamic model of Cr5 steel for large cold roll [J]. Heat Treatment of Metals, 2018,43(7):33-39.
[6]Di Y N, Fu B, Ma D S, et al. Hot deformation characteristics and dynamic recrystallization behavior of Cr5 die casting mold steel [J]. Journal of Materials Research and Technology, 2024,30:3547-3557.
[7]Cao R Z, Wang W, Ma S B, et al. Arrhenius constitutive model and dynamic recrystallization behavior of 18CrNiMo7-6 steel[J]. Journal of Materials Research and Technology, 2023,24:6334-6347.
[8]陈由红,兰博,李金栋,等.挤压态GH710合金本构模型研究及应用验证[J].稀有金属,2023,47(7):986-994.
Chen Y H,Lan B,Li J D,et al. Material characterization and validation for constitutive model of as-extruded GH710 alloy[J]. Chinese Journal of Rare Metals, 2023,47(7):986-994.
[9]Han L Y, Zhu X J, Wei D J, et al. Construction of an Arrhenius constitutive model for Mg-Y-Nd-Zr-Gd rare earth magnesium alloy based on the Zener-Hollomon parameter and objective evaluation of its accuracy in the twinning-rich intervals [J]. Journal of Magnesium and Alloys, 2024,12 (7):2890-2908.
[10]Zhang H B, Zhang Y K, Huang Y L, et al. The thermal deformation behavior and processing map of TC9 titanium alloy [J]. Journal of Materials Research and Technology, 2024,33:6576-6590.
[11]Chen Y J, Li Q A, Chen X Y, et al. Construction of hot processing map, dynamic recrystallization critical conditions and kinetic model of AZ61 alloy [J]. Materials Today Communications, 2024,40:109540.
[12]An D, Qian B Y, Wu R Z, et al. Influence of power dissipation value and deformation activation energy on recrystallization in compression deformation behavior of Mg-Li-Zn-Y alloy [J]. Journal of Rare Earths, 2024,42 (12):2341-2349.
[13]Xin J J, Zhang L Q, Ge G W, et al. Characterization of microstructure evolution in β-γ TiAl alloy containing high content of Niobium using constitutive equation and power dissipation map [J]. Materials & Design, 2016,107:406-415.
[14]丰园海,郑双昱,罗翔,等.Fe-28Mn-10Al-0.8C的热压缩行为及微观组织结构转变[J].铜业工程,2023(2):50-60.
Feng Y H,Zheng S Y,Luo X,et al. Hot deformation behavior and microstructure evolution of Fe-28Mn-10Al-0.8C low density steel [J].Copper Engineering,2023(2):50-60.
[15]Li C M, Huang L, Zhao M J, et al. Study on microstructure evolution and deformation mechanism of Ti-6554 based on power dissipation efficiency at supertransus temperatures [J]. Journal of Alloys and Compounds, 2022,924:166481.
[16]Chen L, Zhang B, Yang Y, et al. Evolution of hot processing map and microstructure of as-forged nickel-based superalloy during hot deformation [J]. Journal of Materials Research and Technology, 2023,24:7638-7653.
|