网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
50Cr5NiMoV支承辊钢热变形行为
英文标题:Hot deformation behavior for 50Cr5NiMoV backup roller steel
作者:鲁一波1 李玉贵1 赵广辉1 王佳姚1 邹志杰1 宋耀辉2 郭强1 
单位:1. 太原科技大学 机械工程学院 山西 太原 030024 2. 太原科技大学 重型机械教育部工程研究中心 山西 太原 030024 
关键词:50Cr5NiMoV支承辊钢 热变形行为 热加工图 应力三轴度 Arrhenius模型 
分类号:TG142.5
出版年,卷(期):页码:2025,50(6):214-220
摘要:

通过单道次压缩实验,系统研究了50Cr5NiMoV支承辊钢在变形温度为950~1150 ℃、应变速率为0.01~1 s-1、变形量为50%条件下的热变形行为。实验结果表明,流变应力随着变形温度的升高而降低,随着应变速率的升高而升高。基于真应力-真应变曲线,构建了应变补偿的Arrhenius模型,并通过拟合获得了材料常数与应变的多项式关系。此外,针对不同应变水平,构建了耗散效率图和热加工图,结果显示最佳加工区为1075~1150 ℃、0.01~0.22 s-1。在此基础上,分别在热加工图的安全区和失稳区进行了自由锻造仿真。仿真结果表明,失稳区锻造的工件主要表现为三轴拉应力状态,而安全区锻造的工件则主要表现为三轴压应力状态。研究结果为50Cr5NiMoV支承辊钢的热加工工艺优化提供了理论依据和实验支持,具有重要的工程应用价值。

 

The hot deformation behavior of 50Cr5NiMoV backup roller steel was systematically investigated by single-pass compression tests at the deformation temperature of 950-1150 ℃, the strain rate of 0.01-1 s-1, and the deformation amount of 50%. The test results show that the rheological stress decreases with the increasing of deformation temperature and increases with the increasing of strain rate. Based on the true stress-strain curves, a strain-compensated Arrhenius model was constructed, and the polynomial relationship between material constants and strain was obtained by fitting. In addition, the dissipation efficiency map and hot processing map were constructed for different strain levels, The results show that the optimal processing zone is 1075-1150 ℃ and 0.01-0.22 s-1. On this basis, the free forging simulations were carried out in the safe zone and the unstable zone of the hot processing map, respectively. The simulation results show that the forged workpiece in the unstable zone mainly exhibits a triaxial tensile stress state, while the forged workpiece in the stable region is mainly subjected to a triaxial compressive stress states. Thus, the research results provide a theoretical basis and test support for the optimization of the hot processing process of 50Cr5NiMoV backup roller steel, which has significant engineering application value.

基金项目:
山西省基础研究计划(202303011211004,TZLH20230818001);国家自然科学基金资助项目(52375364);太原科技大学科研启动基金(20242041,20242094);山西省高等教育科技创新计划(2024L211)
作者简介:
作者简介:鲁一波(1999-),男,硕士研究生,E-mail:yibo_lu@163.com;通信作者:李玉贵(1967-),男,博士,教授,E-mail:lygtykd@163.com
参考文献:

[1]周会军.支承辊材料Cr5钢的热变形行为及微观组织仿真技术研究[D].洛阳:河南科技大学,2015.


 

Zhou H J. Study on Hot Deformation Behavior of Cr5 Steel and Microstructure Simulation Technology for Heavy Backup Roll Hot Forging Process [D]. Luoyang: Henan University of Science and Technology, 2015.

 

[2]元亚莎.Cr5钢支承辊最终热处理组织和性能的研究 [D].洛阳:河南科技大学,2015.

 

Yuan Y S. Analysis of Ultimate Heat Treatment on Microstructure and Properties of Cr5 Steel Back-up Roll [D]. Luoyang: Henan University of Science and Technology, 2015.

 

[3]陈学文,郭未昀,周旭东.轧辊用Cr5钢静态再结晶行为及元胞自动机模拟 [J]. 材料热处理学报,2018,39(6):124-132.

 

Chen X W, Guo W Y, Zhou X D. Static recrystallization behavior and cellular automaton simulation of Cr5 steel for roller [J]. Transactions of Materials and Heat Treatment, 2018,39(6):124-132.

 

[4]李颖,杜帅,李敏,等. Cr5钢的热加工性能分析 [J].塑性工程学报,2022,29(12):151-161.

 

Li Y, Du S, Li M, et al. Analysis of hot working performance of Cr5 steel [J]. Journal of Plasticity Engineering, 2022,29(12):151-161.

 

[5]郭未昀,周旭东,陈学文.大型冷轧辊Cr5钢的静态再结晶行为及其动力学模型 [J].金属热处理,2018,43(7):33-39.

 

Guo W Y, Zhou X D, Chen X W. Static recrystallization behavior and dynamic model of Cr5 steel for large cold roll [J]. Heat Treatment of Metals, 2018,43(7):33-39.

 

[6]Di Y N, Fu B, Ma D S, et al. Hot deformation characteristics and dynamic recrystallization behavior of Cr5 die casting mold steel [J]. Journal of Materials Research and Technology, 2024,30:3547-3557.

 

[7]Cao R Z, Wang W, Ma S B, et al. Arrhenius constitutive model and dynamic recrystallization behavior of 18CrNiMo7-6 steel[J]. Journal of Materials Research and Technology, 2023,24:6334-6347.

 

[8]陈由红,兰博,李金栋,等.挤压态GH710合金本构模型研究及应用验证[J].稀有金属,2023,47(7):986-994.

 

Chen Y H,Lan B,Li J D,et al. Material characterization and validation for constitutive model of as-extruded GH710 alloy[J]. Chinese Journal of Rare Metals, 2023,47(7):986-994.

 

[9]Han L Y, Zhu X J, Wei D J, et al. Construction of an Arrhenius constitutive model for Mg-Y-Nd-Zr-Gd rare earth magnesium alloy based on the Zener-Hollomon parameter and objective evaluation of its accuracy in the twinning-rich intervals [J]. Journal of Magnesium and Alloys, 2024,12 (7):2890-2908.

 

[10]Zhang H B, Zhang Y K, Huang Y L, et al. The thermal deformation behavior and processing map of TC9 titanium alloy [J]. Journal of Materials Research and Technology, 2024,33:6576-6590.

 

[11]Chen Y J, Li Q A, Chen X Y, et al. Construction of hot processing map, dynamic recrystallization critical conditions and kinetic model of AZ61 alloy [J]. Materials Today Communications, 2024,40:109540.

 

[12]An D, Qian B Y, Wu R Z, et al. Influence of power dissipation value and deformation activation energy on recrystallization in compression deformation behavior of Mg-Li-Zn-Y alloy [J]. Journal of Rare Earths, 2024,42 (12):2341-2349.

 

[13]Xin J J, Zhang L Q, Ge G W, et al. Characterization of microstructure evolution in β-γ TiAl alloy containing high content of Niobium using constitutive equation and power dissipation map [J]. Materials & Design, 2016,107:406-415.

 

[14]丰园海,郑双昱,罗翔,等.Fe-28Mn-10Al-0.8C的热压缩行为及微观组织结构转变[J].铜业工程,2023(2):50-60.

 

Feng Y H,Zheng S Y,Luo X,et al. Hot deformation behavior and microstructure evolution of Fe-28Mn-10Al-0.8C low density steel [J].Copper Engineering,2023(2):50-60.

 

[15]Li C M, Huang L, Zhao M J, et al. Study on microstructure evolution and deformation mechanism of Ti-6554 based on power dissipation efficiency at supertransus temperatures [J]. Journal of Alloys and Compounds, 2022,924:166481.

 

[16]Chen L, Zhang B, Yang Y, et al. Evolution of hot processing map and microstructure of as-forged nickel-based superalloy during hot deformation [J]. Journal of Materials Research and Technology, 2023,24:7638-7653.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9