[1]Wang B H, Cheng L, Li D C. Study on very high cycle fatigue properties of forged TC4 titanium alloy treated by laser shock peening under three-point bending[J]. International Journal of Fatigue, 2022, 156: 106668.
[2]Wang X Y, Zhu S D, Yang Z G, et al. Corrosion-resistance mechanism of TC4 titanium alloy under different stress-loading conditions[J]. Materials, 2022, 15(13): 4381.
[3]Yuan X, Yue Z F, Wen S F, et al. Numerical and experimental investigation of the cold expansion process with split sleeve in titanium alloy TC4[J]. International Journal of Fatigue, 2015, 77: 78-85.
[4]Liu J, Wu H G, Yang J J, et al. Effect of edge distance ratio on residual stresses induced by cold expansion and fatigue life of TC4 plates[J]. Engineering Fracture Mechanics, 2013, 109: 130-137.
[5]刘飞, 苏宏华, 徐九华, 等. 孔挤压强化技术研究进展[J]. 塑性工程学报, 2024, 31(3): 1-16.
Liu F, Su H H, Xu J H, et al. Research progress of hole expansion strengthening technology[J]. Journal of Plasticity Engineering, 2024, 31(3): 1-16.
[6]Sticchi M, Schnubel D, Kashaec N, et al. Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components[J]. Applied Mechanics Reviews, 2015, 67(1): 010801.
[7]Fu Y C, Ge E D, Su H H, et al. Cold expansion technology of connection holes in aircraft structures: A review and prospect[J]. Chinese Journal of Aeronautics, 2015, 28(4): 961-973.
[8]王燕礼, 朱有利, 曹强, 等. 孔挤压强化技术研究进展与展望[J]. 航空学报, 2018, 39(2): 1-17.
Wang Y L, Zhu Y L, Cao Q, et al. Progress and prospect of research on hole cold expansion technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 1-17.
[9]林忠亮, 白清顺, 王洪飞, 等. 孔用衬套冷挤压的强化机理与疲劳寿命研究进展[J]. 表面技术, 2023, 52(4): 1-14,99.
Lin Z L, Bai Q S, Wang H F, et al. Research progress of strengthening mechanism and fatigue life in cold extrusion of bushing for hole[J]. Surface Technology, 2023, 52(4): 1-14,99.
[10]Jose Calaf-Chica, Marta María Marín, Eva María Rubio, et al. Parametric analysis of the mandrel geometrical data in a cold expansion process of small holes drilled in thick plates[J]. Materials, 2019, 12(24): 4150.
[11]Karabin M E, Barlat F, Schultz R W. Numerical and experimental study of the cold expansion process in 7085 plate using a modified split sleeve[J]. Journal of Materials Processing Technology, 2007, 189(1-3): 45-57.
[12]Su M, Amrouche A, Mesmacque G, et al. Numerical study of double cold expansion of the hole at crack tip and the influence on the residual stresses field[J]. Computational Materials Science, 2008, 41(3): 350-355.
[13]Maximov J T, Kuzmanov T V, Anchev A P, et al. A finite element simulation of the spherical mandrelling process of holes with cracks[J]. Journal of Materials Processing Technology, 2006, 171(3): 459-466.
[14]Lyu H Q, Fan Z Y, Xu X, et al. Simulation research on cold extrusion strengthening and reaming of 7050 aluminum alloy plate hole[J]. Key Engineering Materials, 2022, 921: 109-115.
[15]Pucillo G P, Carrabs A, Cuomo S, et al. Cold expansion of rail-end-bolt holes: Finite element predictions and experimental validation by DIC and strain gauges[J]. International Journal of Fatigue, 2021, 149: 106275.
[16]Liu K Y, Zhou L, Yang X S, et al. Finite element simulation of the cold expansion process with split sleeve in 7075 aluminum alloy[J]. Journal of The Institution of Engineers (India) Series C, 2021, 102(2): 361-374.
[17]葛恩德, 苏宏华, 程远庆, 等. TC4板孔冷挤压强化残余应力分布与疲劳寿命[J]. 中国机械工程, 2015, 26(7): 971-976.
Ge E D, Su H H, Cheng Y Q, et al. Residual stress fields and fatigue life of cold expansion hole in titanium alloy TC4[J]. China Mechanical Engineering, 2015, 26(7): 971-976.
[18]葛恩德, 傅玉灿, 苏宏华, 等. TC21钛合金板孔冷挤压残余应力与疲劳性能研究[J]. 稀有金属材料与工程, 2016, 45(5): 1189-1195.
Ge E D, Fu Y C, Su H H, et al. Residual stress and fatigue properties of the cold hole expansion process in titanium alloy TC21 plates[J]. Rare Metal Materials and Engineering, 2016, 45(5): 1189-1195.
[19]Maximov J T, Duncheva G V, Amudjev I M. A novel method and tool which enhance the fatigue life of structural components with fastener holes[J]. Engineering Failure Analysis, 2013, 31: 132-143.
[20]葛恩德. 碳纤维复合材料及其叠层连接结构孔挤压强化技术研究[D]. 南京: 南京航空航天大学, 2015.
Ge E D. Research on Hole Expansion Strengthening Technology of Composites and Their Stacks Joint Structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
[21]刘渊, 薛红前, 靳泓睿, 等. 7075铝合金连接孔复合强化数值模拟及疲劳试验研究[J]. 航空制造技术, 2019, 62(21): 52-58,68.
Liu Y, Xue H Q, Jin H R, et al. Numerical simulation and fatigue experiment of 7075 aluminum alloy joint holes processed by compound strengthening technology[J]. Aeronautical Manufacturing Technology, 2019, 62(21): 52-58,68.
[22]余江, 姜银方, 戴亚春, 等. 铝合金紧固孔复合强化工艺研究[J]. 表面技术, 2016, 45(11): 153-158.
Yu J, Jiang Y F, Dai Y C, et al. Composite strengthening process of aluminum alloy fastener holes[J]. Surface Technology, 2016, 45(11): 153-158.
[23]刘飞, 苏宏华, 徐九华, 等. 孔挤压强化对7050铝合金孔结构疲劳性能的影响[J]. 稀有金属材料与工程, 2024, 53(3): 709-717.
Liu F, Su H H, Xu J H, et al. Effects of hole expansion strengthening on fatigue properties of 7050 aluminum alloy hole structure[J]. Rare Metal Materials and Engineering, 2024, 53(3): 709-717.
[24]刘飞, 苏宏华, 梁勇楠, 等. 芯棒直接孔挤压强化7050铝合金疲劳性能研究[J]. 稀有金属材料与工程, 2023, 52(9): 3116-3125.
Liu F, Su H H, Liang Y N, et al. Fatigue properties of mandrel direct hole expansion strengthened 7050 aluminum alloy[J]. Rare Metal Materials and Engineering, 2023, 52(9): 3116-3125.
[25]刘飞, 苏宏华, 徐九华, 等. 面向Ti-6Al-4V合金的开缝芯棒孔挤压强化次数研究[J]. 钛工业进展, 2023, 40(3): 14-18.
Liu F, Su H H, Xiu J H, et al. Research of hole expansion strengthening times of split mandrel for Ti-6Al-4V alloy[J]. Titanium Industry Progress, 2023, 40(3): 14-18.
[26]HB/Z 112—1986, 材料疲劳试验统计分析方法[S].
HB/Z 112—1986, Statistical analysis method for material fatigue test[S].
[27]Yasniy P, Glado S, Iasnii V. Lifetime of aircraft alloy plates with cold expanded holes[J]. International Journal of Fatigue, 2017, 104: 112-119.
[28]Wang Y L, Fu B, Nie L, et al. Fatigue nucleation site of cold expansion hole varying as fatigue load level varies[J]. SN Applied Sciences, 2019, 867: 1-10.
[29]Yan W Z, Wang X S, Gao H S, et al. Effect of split sleeve cold expansion on cracking behaviors of titanium alloy TC4 holes[J]. Engineering Fracture Mechanics, 2012, 88: 79-89.
|