网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
开缝芯棒孔挤压强化TC4钛合金疲劳性能研究
英文标题:Research on fatigue properties for TC4 titanium alloy strengthened by slotted mandrel hole extrusion
作者:曹洋1 2 肖彪3 刘飞1 4 武杰1 苗晓鹏1 徐九华2 苏宏华2 
单位:1. 安阳工学院 机械与航空制造工程学院 河南 安阳 455000 2. 南京航空航天大学 江苏省精密与微细制造技术重点实验室  江苏 南京 210016 3. 南京晨光集团有限责任公司 江苏 南京 210006 4. 河南科技大学 机电工程学院 河南 洛阳 471003 
关键词:开缝芯棒孔挤压强化 TC4钛合金 残余应力 疲劳性能 相对挤压量 
分类号:TG376.3
出版年,卷(期):页码:2025,50(6):108-119
摘要:

为了提高TC4钛合金孔试样的疲劳性能,建立了开缝芯棒孔挤压强化三维有限元仿真模型,开展了开缝芯棒孔挤压强化试验与疲劳性能测试,探究了相对挤压量对孔壁微观组织、应力和试样疲劳性能的影响。研究结果表明:相对挤压量e为3%的试样孔壁塑性变形层深度与残余压应力大于e为2%和0%的试样,塑性变形增加了晶粒位错,残余压应力降低了孔壁应力,使其中值疲劳寿命也最大;e为0%、2%和3%试样的平均疲劳条纹宽度分别为1.2、0.9和0.7 μm;e为2%和3%试样的中值疲劳寿命是e为0%试样的1.6和2.1倍。

In order to improve the fatigue performance of TC4 titanium alloy hole specimen, a three-dimensional finite element simulation model of slotted mandrel hole extrusion strengthening was established, slotted mandrel hole extrusion strengthening tests and fatigue performance tests were carried out, and the influences of relative expansion amount on the hole wall microstructure, stress and fatigue performance of specimen were studied. The research results show that the depth of plastic deformation layer and the residual compressive stress for specimen hole wall with a relative extrusion amount e of 3% are greater than those of the specimen with e of 2% and 0%. The plastic deformation increases the grain dislocation, and the residual compressive stress reduces the hole wall stress, causing the median fatigue life of the specimen with e of 3% to be greater than those of the specimen with e of 2% and 0%. The average fatigue fringe widths of the specimen with e of 0%, 2% and 3% are 1.2, 0.9 and 0.7 μm, and the median fatigue life of the specimen with e of 2% and 3% is 1.6 and 2.1 times that of the specimen with e of 0%.

 
基金项目:
河南省高等学校重点科研项目(25A460025);国家自然科学基金资助项目(52405446);河南省重点研发与推广专项(科技公关)(242102221020);江苏省精密与微细制造技术重点实验室开放基金项目(JSKL2223K01);安阳工学院博士后科研启动基金项目(BHJ2025004)
作者简介:
作者简介:曹洋(1989-),男,博士,讲师,E-mail:caoyang@ayit.edu.cn;通信作者:刘飞(1989-),男,博士,讲师,E-mail:liufei07104517@163.com
参考文献:

[1]Wang B H, Cheng L, Li D C. Study on very high cycle fatigue properties of forged TC4 titanium alloy treated by laser shock peening under three-point bending[J]. International Journal of Fatigue, 2022, 156: 106668.


 

[2]Wang X Y, Zhu S D, Yang Z G, et al. Corrosion-resistance mechanism of TC4 titanium alloy under different stress-loading conditions[J]. Materials, 2022, 15(13): 4381.

 

[3]Yuan X, Yue Z F, Wen S F, et al. Numerical and experimental investigation of the cold expansion process with split sleeve in titanium alloy TC4[J]. International Journal of Fatigue, 2015, 77: 78-85.

 

[4]Liu J, Wu H G, Yang J J, et al. Effect of edge distance ratio on residual stresses induced by cold expansion and fatigue life of TC4 plates[J]. Engineering Fracture Mechanics, 2013, 109: 130-137.

 

[5]刘飞, 苏宏华, 徐九华, 等. 孔挤压强化技术研究进展[J]. 塑性工程学报, 2024, 31(3): 1-16.

 

Liu F, Su H H, Xu J H, et al. Research progress of hole expansion strengthening technology[J]. Journal of Plasticity Engineering, 2024, 31(3): 1-16.

 

[6]Sticchi M, Schnubel D, Kashaec N, et al. Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components[J]. Applied Mechanics Reviews, 2015, 67(1): 010801.

 

[7]Fu Y C, Ge E D, Su H H, et al. Cold expansion technology of connection holes in aircraft structures: A review and prospect[J]. Chinese Journal of Aeronautics, 2015, 28(4): 961-973.

 

[8]王燕礼, 朱有利, 曹强, 等. 孔挤压强化技术研究进展与展望[J]. 航空学报, 2018, 39(2): 1-17.

 

Wang Y L, Zhu Y L, Cao Q, et al. Progress and prospect of research on hole cold expansion technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 1-17.

 

[9]林忠亮, 白清顺, 王洪飞, 等. 孔用衬套冷挤压的强化机理与疲劳寿命研究进展[J]. 表面技术, 2023, 52(4): 1-14,99.

 

Lin Z L, Bai Q S, Wang H F, et al. Research progress of strengthening mechanism and fatigue life in cold extrusion of bushing for hole[J]. Surface Technology, 2023, 52(4): 1-14,99.

 

[10]Jose Calaf-Chica, Marta María Marín, Eva María Rubio, et al. Parametric analysis of the mandrel geometrical data in a cold expansion process of small holes drilled in thick plates[J]. Materials, 2019, 12(24): 4150.

 

[11]Karabin M E, Barlat F, Schultz R W. Numerical and experimental study of the cold expansion process in 7085 plate using a modified split sleeve[J]. Journal of Materials Processing Technology, 2007, 189(1-3): 45-57.

 

[12]Su M, Amrouche A, Mesmacque G, et al. Numerical study of double cold expansion of the hole at crack tip and the influence on the residual stresses field[J]. Computational Materials Science, 2008, 41(3): 350-355.

 

[13]Maximov J T, Kuzmanov T V, Anchev A P, et al. A finite element simulation of the spherical mandrelling process of holes with cracks[J]. Journal of Materials Processing Technology, 2006, 171(3): 459-466.

 

[14]Lyu H Q, Fan Z Y, Xu X, et al. Simulation research on cold extrusion strengthening and reaming of 7050 aluminum alloy plate hole[J]. Key Engineering Materials, 2022, 921: 109-115.

 

[15]Pucillo G P, Carrabs A, Cuomo S, et al. Cold expansion of rail-end-bolt holes: Finite element predictions and experimental validation by DIC and strain gauges[J]. International Journal of Fatigue, 2021, 149: 106275.

 

[16]Liu K Y, Zhou L, Yang X S, et al. Finite element simulation of the cold expansion process with split sleeve in 7075 aluminum alloy[J]. Journal of The Institution of Engineers (India) Series C, 2021, 102(2): 361-374.

 

[17]葛恩德, 苏宏华, 程远庆, 等. TC4板孔冷挤压强化残余应力分布与疲劳寿命[J]. 中国机械工程, 2015, 26(7): 971-976.

 

Ge E D, Su H H, Cheng Y Q, et al. Residual stress fields and fatigue life of cold expansion hole in titanium alloy TC4[J]. China Mechanical Engineering, 2015, 26(7): 971-976.

 

[18]葛恩德, 傅玉灿, 苏宏华, 等. TC21钛合金板孔冷挤压残余应力与疲劳性能研究[J]. 稀有金属材料与工程, 2016, 45(5): 1189-1195.

 

Ge E D, Fu Y C, Su H H, et al. Residual stress and fatigue properties of the cold hole expansion process in titanium alloy TC21 plates[J]. Rare Metal Materials and Engineering, 2016, 45(5): 1189-1195.

 

[19]Maximov J T, Duncheva G V, Amudjev I M. A novel method and tool which enhance the fatigue life of structural components with fastener holes[J]. Engineering Failure Analysis, 2013, 31: 132-143.

 

[20]葛恩德. 碳纤维复合材料及其叠层连接结构孔挤压强化技术研究[D]. 南京: 南京航空航天大学, 2015.

 

Ge E D. Research on Hole Expansion Strengthening Technology of Composites and Their Stacks Joint Structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.

 

[21]刘渊, 薛红前, 靳泓睿, 等. 7075铝合金连接孔复合强化数值模拟及疲劳试验研究[J]. 航空制造技术, 2019, 62(21): 52-58,68.

 

Liu Y, Xue H Q, Jin H R, et al. Numerical simulation and fatigue experiment of 7075 aluminum alloy joint holes processed by compound strengthening technology[J]. Aeronautical Manufacturing Technology, 2019, 62(21): 52-58,68.

 

[22]余江, 姜银方, 戴亚春, 等. 铝合金紧固孔复合强化工艺研究[J]. 表面技术, 2016, 45(11): 153-158.

 

Yu J, Jiang Y F, Dai Y C, et al. Composite strengthening process of aluminum alloy fastener holes[J]. Surface Technology, 2016, 45(11): 153-158.

 

[23]刘飞, 苏宏华, 徐九华, 等. 孔挤压强化对7050铝合金孔结构疲劳性能的影响[J]. 稀有金属材料与工程, 2024, 53(3): 709-717.

 

Liu F, Su H H, Xu J H, et al. Effects of hole expansion strengthening on fatigue properties of 7050 aluminum alloy hole structure[J]. Rare Metal Materials and Engineering, 2024, 53(3): 709-717.

 

[24]刘飞, 苏宏华, 梁勇楠, 等. 芯棒直接孔挤压强化7050铝合金疲劳性能研究[J]. 稀有金属材料与工程, 2023, 52(9): 3116-3125.

 

Liu F, Su H H, Liang Y N, et al. Fatigue properties of mandrel direct hole expansion strengthened 7050 aluminum alloy[J]. Rare Metal Materials and Engineering, 2023, 52(9): 3116-3125.

 

[25]刘飞, 苏宏华, 徐九华, 等. 面向Ti-6Al-4V合金的开缝芯棒孔挤压强化次数研究[J]. 钛工业进展, 2023, 40(3): 14-18.

 

Liu F, Su H H, Xiu J H, et al. Research of hole expansion strengthening times of split mandrel for Ti-6Al-4V alloy[J]. Titanium Industry Progress, 2023, 40(3): 14-18.

 

[26]HB/Z 112—1986, 材料疲劳试验统计分析方法[S].

 

HB/Z 112—1986, Statistical analysis method for material fatigue test[S].

 

[27]Yasniy P, Glado S, Iasnii V. Lifetime of aircraft alloy plates with cold expanded holes[J]. International Journal of Fatigue, 2017, 104: 112-119.

 

[28]Wang Y L, Fu B, Nie L, et al. Fatigue nucleation site of cold expansion hole varying as fatigue load level varies[J]. SN Applied Sciences, 2019, 867: 1-10.

 

[29]Yan W Z, Wang X S, Gao H S, et al. Effect of split sleeve cold expansion on cracking behaviors of titanium alloy TC4 holes[J]. Engineering Fracture Mechanics, 2012, 88: 79-89.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9