网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
内压对汽车桥壳管件充液压制成形影响的分析与试验
英文标题:Analysis and test of influence of internal pressure on hydroforming for automobile axle housing tube
作者:刘超1 2 吴娜1 杨志安3 孙强2 罗力元2 
单位:1.唐山学院 机电工程学院 河北 唐山 063000 2.宁波圣龙汽车动力系统股份有限公司 浙江 宁波 315099 3.唐山亚特专用汽车有限公司 河北 唐山 063000 
关键词:汽车桥壳管件 胀压成形 充液压制成形 塑性成形 内压 成形质量 
分类号:TG394
出版年,卷(期):页码:2025,50(6):95-101
摘要:

充液压制成形工艺是胀压成形桥壳管件的关键步骤,其中,内压为影响管件成形质量的重要参数。首先,通过分析内压作用下充液压制成形桥壳管件的变形过程,提出了内压的设计方法,给出了内压变化系数Kp。然后,针对某载重为6.5 t的货车桥壳管件的充液压制成形,通过设定不同的Kp,进行了有限元仿真分析,得到了内压对汽车桥壳管件成形的影响规律,并基于桥壳管件成形质量和模具力大小,得出了内压变化系数Kp的工艺窗口变动范围为0.07~0.13。最后,在专用的设备上进行了充液压制成形试验,试验结果与有限元模拟结果吻合,为大型复杂截面管件充液压制成形工艺提供了参考。

The hydroforming process is a critical step in the bulging forming of axle housing tubes, and the internal pressure is an important parameter affecting the forming quality of tube. Firstly, by analyzing the deformation process of hydroforming axle housing tube under internal pressure, the internal pressure design method was proposed, and the internal pressure variation coefficient Kp was given. Furthermore, for the hydroforming axle housing tube of truck with a load capacity of 6.5 t, the finite element simulation analysis was conducted by setting different Kp, and the influence rule of internal pressure on the forming of automobile axle housing tube was obtained. Based on the forming quality and the die force of axle housing tube, the range of the internal pressure variation coefficient Kp was 0.07-0.13. Finally, the hydroforming test was carried out on a dedicated equipment, and the test results were consistent with the finite element simulation results.Thus, the results provide a reference for the hydroforming process of large-complex-section tubes.

基金项目:
河北省高等学校科学技术研究项目(QN2019335);河北省智能装备数字化设计及过程仿真重点实验室项目;唐山市科技计划项目(21130206D);唐山学院博创基金(tsxybc201915)
作者简介:
作者简介:刘超(1982-),男,博士,副教授,E-mail:33430794@qq.com;通信作者:吴娜(1980-),女,博士,教授,E-mail:myletter2006@163.com
参考文献:

[1]郭训忠, 陶杰, 王辉. 航空导管先进成形技术的研究进展[J].南京航空航天大学学报, 2020, 52(1):12-23.


 

Guo X Z, Tao J, Wang H. Research progress on advanced forming technology for aviation tube [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(1):12-23.

 

[2]何滔,顾栩.TRB管无补料液压胀形波纹管的研究[J].锻压技术, 2023, 47(4):103-109.

 

He T,Gu X. Research on TRB pipe hydraulic bulging bellows without feeding material [J].Forming & Stamping Technology, 2023, 47(4):103-109.

 

[3]徐勇,王云,田亚强,等.非对称异形管零件的液压成形轴向补料方式[J]. 塑性工程学报, 2021, 28(11):56-64.

 

Xu Y, Wang Y, Tian Y Q, et al. Axial feeding modes of asymmetrical irregular tube part in hydroforming [J]. Journal of Plasticity Engineering, 2021, 28(11):56-64.

 

[4]冯莹莹,孙晓倩,贾越,等.Y形管内高压成形过程数值模拟与实验研究[J].锻压技术, 2023, 48(5):236-244.

 

Feng Y Y, Sun X Q, Jia Y, et al. Numerical simulation and experimental study on hydroforming process for Y-shaped tube[J]. Forming & Stamping Technology, 2023,48(5): 236-244.

 

[5]姬增利,罗云华,金俊松. Y型三通管充液挤压成形的数值模拟[J].热加工工艺, 2022, 51(5):89-93.

 

Ji Z L, Luo Y H, Jin J S. Numerical simulation on hydro-extruding forming of Y-shaped three-way tube [J]. Hot Working Technology, 2022, 51(5):89-93.

 

[6]范玉斌,徐雪峰,王磊,等.T型管内高压成形差异化润滑优化[J].塑性工程学报, 2022, 29(3):44-52.

 

Fan Y B, Xu X F, Wang L, et al. Differential lubrication optimization of T-tube hydroforming [J]. Journal of Plasticity Engineering, 2022, 29(3):44-52.

 

[7]张志超,王煜,王建光,等.航天铝合金深腔零件整体成形预制坯优化设计[J].上海航天(中英文),2020, 37(3):76-81,88.

 

Zhang Z C,Wang Y,Wang J G, et al. Optimization design of integrally precast aluminum alloy deep-cavity shell parts [J]. Aerospace Shanghai (Chinese & English), 2020, 37(3):76-81,88.

 

[8]张鑫龙,贺久强,韩聪,等.椭圆截面管件充液压制变形与应力分析[J].机械工程学报, 2017, 53(18):35-41.

 

Zhang X L, He J Q, Han C, et al. Plastic deformation and stress analysis on hydro-pressing of mild steel tube with elliptical section[J]. Journal of Mechanical Engineering, 2017, 53(18):35-41.

 

[9]毛献昌. 管材径压胀形技术[J]. 液压气动与密封, 2014, 34(10):15-17,80.

 

Mao X C. Tube hydroforming with radical crushing[J]. Hydraulics Pneumatics & Seals, 2014, 34(10):15-17,80.

 

[10]Nikhare C,Weiss M, Hodgson P D. Die closing force in low pressure tube hydroforming[J]. Journal of Materials Processing Technology, 2010, 210(15): 2238-2244.

 

[11]王连东,梁晨,马雷,等.汽车桥壳液压胀形工艺的研究及最新进展[J].燕山大学学报, 2012, 36(3): 206-209. 

 

Wang L D, Liang C, Ma L, et al. Research and development of hydroforming automobile housings [J]. Journal of Yanshan University, 2012, 36(3): 206-209. 

 

[12]崔亚平,王连东,杨立云,等.附加前盖对汽车桥壳胀-压成形性的影响[J].中国机械工程, 2013, 24(13):1831-1835.

 

Cui Y P, Wang L D, Yang L Y, et al. Effects of additional front-dome on bulging-pressing formability for automobile axle-housing[J]. Journal of Mechanical Engineering, 2013, 24(13):1831-1835.

 

[13]王连东,庞蒙,周立凤,等.中型卡车胀压成形桥壳预成形管坯的设计及成形分析[J].中国机械工程, 2015, 26(12): 1684-1689.

 

Wang L D, Pang M, Zhou L F, et al. Preforming tube′s design and deformation analyses of medium-sized truck bulging-pressing axle housing[J]. China Mechanical Engineering, 2015, 26(12): 1684-1689.

 

[14]吴娜,王连东,沈亚坤,等.充液压制成形汽车桥壳后盖区开裂分析及预成形管坯形状优化设计[J].中国机械工程, 2016, 27(23):3246-3251.

 

Wu N,Wang L D, Shen Y K, et al. Cracking analysis of rear covers and shape optimization of preformed pipes for filling pressing forming axle housings[J]. China Mechanical Engineering, 2016, 27(23):3246-3251.

 

[15]王晓迪,王连东,金淼,等.汽车桥壳多向充液压制小圆弧成形分析及设计[J].吉林大学学报(工学版), 2022(5):998-1008.

 

Wang X D,Wang L D,Jin M,et al. Forming analysis and design for small arc in multi direction hydro-pressing of automobile axle housing[J]. Journal of Jilin University(Engineering and Technology Edition), 2022(5):998-1008.

 

[16]GB/T 228.1—2021, 金属材料拉伸试验第1部分:室温试验方法[S].

 

GB/T 228.1—2021, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9