网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
薄壁回转体零件立式内高压胀形仿真及应用
英文标题:Simulation and application on vertical internal high-pressure bulging for thin-walled rotating parts
作者:高献娟1 王子荣2 阚田田1 黄青松1 孙毓霞1 张帅2 赵文华2 
单位:1.中国航发沈阳黎明航空发动机有限责任公司 辽宁 沈阳 110041 2.伍玥航科(天津)精密制造有限公司 天津 300400 
关键词:薄壁回转体零件 立式内高压胀形 密封结构 外径圆度 液室压力 
分类号:TG394
出版年,卷(期):页码:2025,50(6):86-94
摘要:

为解决薄壁回转体零件采用传统分体式拼焊和刚性胀瓣胀形方式制造时出现的产品尺寸精度差、装配困难、合格率低和成本高等问题,以内高压胀形技术为基础,设计立式内高压胀形方案,运用有限元分析软件进行模拟、理论计算辅助分析,并开展实际生产试验进行验证。结果表明:直径为Φ300~Φ800 mm的薄壁回转体零件的立式内高压胀形方案可行,立式内高压胀形方案最佳的密封结构为Y型密封结构,该密封结构需保证预制坯外径大于Y型密封圈内径Φ0.3~Φ0.5 mm,且预制坯外径圆度小于0.2 mm,最大可密封160 MPa液室压力。研究结果为大直径薄壁回转体零件的整体精密成形提供了新思路。

In order to solve the problems of poor product dimensional accuracy, difficult assembly, low pass rate and high cost when thin-walled rotating parts were manufactured by traditional split welding and rigid expansion and bulging method, the vertical internal high-pressure bulging scheme was designed based on internal high-pressure pulging technology, and finite element analysis software was used for simulation, theoretical calculations and auxiliary analysis. Furthermore, the actual production tests were conducted for verification. The results show that the vertical internal high-pressure bulging scheme for thin-walled rotating parts with a diameter of Φ300-Φ800 mm is feasible. Its optimal sealing structure is Y-shaped sealing structure, which must ensure that the outer diameter of preformed blank is larger than the inner diameter of Y-shaped sealing ring by Φ0.3-Φ0.5 mm, and the outer diameter roundness of preformed blank is within 0.2 mm, and the maximum liquid chamber pressure that can be sealed is 160 MPa. Thus, the research result provides new ideas for the integral precision forming of large-diameter thin-walled rotating parts. 

基金项目:
作者简介:
作者简介:高献娟(1975-),女,硕士,高级工程师,E-mail:15640580956@163.com;通信作者:王子荣(1990-),男,硕士,工程师,E-mail:13652095025@139.com
参考文献:

[1]彭景,方毅,徐勇,等.航空异形截面导管内高压整体成形工艺分析[J].兵器装备工程学报,2023,44(10):106-111.


 

Peng J, Fang Y, Xu Y, et al. Analysis of integral hydroforming process in irregular section aviation tube [J]. Journal of Ordnance Equipment Engineering, 2023,44 (10):106-111.

 

[2]陈智勇,周亚飞.不同屈服强度及工艺参数对金属材料高压成形回弹的影响[J].世界有色金属,2022(21):217-219.

 

Chen Z Y, Zhou Y F. Effect of different yield strength and technological parameters on springback of metal materials in high pressure forming [J]. World Nonferrous Metals, 2022(21):217-219.

 

[3]郎利辉, 李涛, 周贤宾, 等.先进充液柔性成形技术及其关键参数研究[J].中国机械工程, 2006,17(S1): 19-22.

 

Lang L H, Li T, Zhou X B, et al. Investigation into the innovative sheet hydroforming and the effect of key process parameters [J]. China Mechanical Engineering, 2006,17 (S1): 19-22.

 

[4]崔晓磊,王祎纯,温时宇,等.内高压成形合模力对变径管尺寸精度的影响[J].精密成形工程, 2022,14(10):12-18.

 

Cui X L, Wang Y C, Wen S Y, et al. Influence of clamping force on dimensional accuracy of variable-d

iameter tubular part in hydroforming [J]. Journal of Netshape Forming Engineering, 2022,14(10): 12-18.

 

[5]张国俊.轴向补料量对扭力梁内高压成形质量的影响[J].模具工业,2024,50(4):32-37.

 

Zhang G J. Influence of axial feeding amount on internal high pressure forming quality of torsion beam parts[J]. Die & Mould Industry, 2024, 50 (4): 32-37.

 

[6]崔晓磊,韩聪,苑世剑.加载条件对内高压成形管件尺寸精度的影响[J].材料科学与工艺,2020,28 (3):150-156.

 

Cui X L, Han C, Yuan S J. Effect of loading conditions on dimension accuracy of hydroformed tubular parts [J]. Materials Science and Technology, 2020, 28 (3): 150-156.

 

[7]成振坤.不等径截面管梁冲压成形分析[J].模具工业, 2022, 48(1):15-18.

 

Cheng Z K. Analysis of stamping forming on pipe beam with unequal section [J]. Die & Mould Industry, 2022, 48 (1):15-18.

 

[8]苑世剑. 现代液压成形技术[M]. 北京:国防工业出版社,2009.

 

Yuan S J. Modern Hydraulic Forming Technology [M]. Beijing: National Defense Industry Press,2009.

 

[9]刘秋萍.不锈钢排气系统前管内高压成形工艺参数分析[J].现代制造技术与装备,2024,60(11):125-127.

 

Liu Q P. Analysis of high pressure forming process parameters in front tube of stainless steel exhaust system[J]. Modern Manufacturing Technology and Equipment, 2024, 60 (11): 125-127.

 

[10]刘邦雄. 某车型副车架内高压预成形数值分析[J]. 汽车实用技术,2022,47(3):156-159. 

 

Liu B X. Numerical analysis of hydroforming in a vehicle subframe [J]. Automobile Applied Technology, 2022, 47 (3): 156-159.

 

[11]张晗,赵军,王敏,等.基于Dynaform的钛合金管材内高压成形缺陷模拟研究[J].现代制造技术与装备, 2021(3):58-60.

 

Zhang H, Zhao J, Wang M, et al. Research on defects simulation of titanium alloy tube hydroforming based on Dynaform [J]. Modern Manufacturing Technology and Equipment, 2021(3):58-60.

 

[12]黄丽容,张池,刘文,等. 大膨胀率薄壁管复合内高压成形工艺研究[J]. 塑性工程学报,2020,27(8):52-59. 

 

Huang L R, Zhang C, Liu W, et al. Composite internal high pressure forming process of thin-walled tube with large expansion ratio [J]. Journal of Plasticity Engineering, 2020, 27 (8): 52-59.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9