网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
预拉伸变形对2024铝合金再结晶组织与性能的影响
英文标题:Influence of pre-stretching deformation on recrystallization structure and properties of 2024 aluminum alloy
作者:张锰1 郑超1 王浩军1 吉丽2 
单位:1.中航西安飞机工业集团股份有限公司 陕西 西安 710089 2.南昌航空大学 材料科学与工程学院 江西 南昌 330063 
关键词:2024-O铝合金 固溶热处理 预变形 粗晶 再结晶 
分类号:TB31;TH142.3
出版年,卷(期):页码:2025,50(6):58-68
摘要:

针对ARCONIC INC和AMAG生产的2024铝合金包铝板材开展了预拉伸变形与组织性能之间关系的研究,结果表明,ARCONIC INC生产的2024铝合金包铝板材较AMAG生产的具有更优的成形性能,AMAG生产的2024铝合金包铝板在预拉伸变形量达到7%~8%时,发生二次再结晶晶粒异常长大,包铝层在预拉伸变形量为4%时即发生粗化,而ARCONIC INC生产的2024铝合金包铝板在预拉伸变形量为7%~8%时发生再结晶粗化,基材在预拉伸变形量达到16%时也未表现出粗化现象。研究结果对于国产铝合金材料生产具有一定的指导意义。

For 2024 aluminum alloy alclad sheets produced by ARCONIC INC and AMAG, the relationship between pre-stretching deformation and microstructure properties was investigated. The results demonstrate that 2024 aluminum alloy alclad sheets produced by ARCONIC INC has better forming performance than that produced by AMAG. When the pre-stretching deformation amount of 2024 aluminum alloy alclad sheets produced by AMAG reaches 7%-8%, the secondary recrystallization grains grow abnormally, and the alclad layer coarsens at a pre-stretching deformation of 4%. In contrast, 2024 aluminum alloy alclad sheets produced by ARCONIC INC undergoes recrystallization coarsening when the pre-stretching amount is 7%-8%, and the substrate does not show coarsening when the pre-stretching deformation amount reaches 16%. Thus, the research results have certain guiding significance for the production of domestic aluminum alloy materials. 

基金项目:
作者简介:
作者简介:张锰(1993-),男,博士,高级工程师,E-mail:249755783@qq.com;通信作者:吉丽(1988-),女,博士,讲师,E-mail:jili@nchu.edu.cn
参考文献:

[1]苏海,高文理,毛成,等. 搅拌铸造SiCp/2024铝基复合材料的显微组织与力学性能[J]. 中国有色金属学报,2010,20(2):217-225.


 

Su H, Gao W L, Mao C, et al. Microstructures and mechanical properties of SiCp/2024 aluminum matrix composite synthesized by stir casting[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(2): 217-225.

 

[2]纪朝辉,张璋,苏景新,等. 局部拉弯应力对民机蒙皮2024-T3铝合金剥蚀行为的影响[J]. 航空学报,2012,33(5):956-964.

 

Ji Z H, Zhang Z, Su J X, et al. Impact of local tensile and bending stress on exfoliation corrosion behavior of aluminum alloy 2024-T3 for civil aircraft skin[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 956-964.

 

[3]谢星维,刘莹,柳华炎,等. 飞机蒙皮用纤维金属层合板基体2024-T3铝合金薄板研究[J]. 热加工工艺, 2017,46(18):111-113.

 

Xie X W, Liu Y, Liu H Y, et al. Study on fibre metal laminated plate matrix of 2024-T3 aluminum alloy sheet for aircraft skin[J]. Hot Working Technology, 2017, 46(18): 111-113.

 

[4]李锋,魏志豪,李心娟,等. 飞机蒙皮裂纹探伤设备的设计[J]. 机械制造,2021,59(4):6-8.

 

Li F, Wei Z H, Li X J, et al. Design of crack detection equipment for aircraft skin [J]. Machinery, 2021, 59(4): 6-8.

 

[5]梁国伟. 一种大型飞机蒙皮外形检测工装关键技术研究[J]. 现代机械,2019(5):19-23.

 

Liang G W. Research on key technology of large aircraft skin shape inspection tooling[J]. Modern Machinery, 2019(5): 19-23.

 

[6]韩志仁,孔庆猛,孟祥韬,等. 飞机蒙皮拉形加载轨迹研究[J]. 机械设计与制造,2016(4):258-261.

 

Han Z R, Kong Q M, Meng X T, et al. Study on loading trajectory of aircraft skin in stretch forming[J]. Machinery Design & Manufacture, 2016(4): 258-261.

 

[7]王玲,崔丽,刘韬,等. 复杂凸凹曲率飞机蒙皮充液成形技术研究与应用[J]. 航空制造技术,2017(21):80-84.

 

Wang L, Cui L, Liu T, et al. Research and application of hydroforming for hyperbolic airplane skin with complex concave and convex curvature[J]. Aeronautical Manufacturing Technology, 2017(21): 80-84.

 

[8]SAE AMS-QQ-A-250/5C-2021,Aluminum alloy alclad 2024,plate and sheet[S].

 

[9]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

 

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1:Method of test at room temperature[S].

 

[10]吴剑,刘道新,余洪斌,等. 喷丸强化与应力因素对2E12铝合金晶间腐蚀行为的影响[J]. 机械科学与技术,2012,31(12):1938-1943.

 

Wu J, Liu D X, Yu H B, et al. Influence of shot peening and stress factor on intergranular corrosion of 2E12 aluminium alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(12): 1938-1943.

 

[11]苏景新,张昭,曹发和,等. 铝合金的晶间腐蚀与剥蚀[J]. 中国腐蚀与防护学报,2005(3):187-192.

 

Su J X, Zhang Z, Cao F H, et al. Review on the intergranular corrosion and exfoliation corrosion of aluminum alloys [J]. Journal of Chinese Society for Corrosion and Protection, 2005(3): 187-192.

 

[12]陈险峰,林启权,林高用,等. 2519铝合金热轧板材晶间腐蚀的研究[J]. 腐蚀科学与防护技术,2004(1):13-16.

 

Chen X F, Lin Q Q, Lin G Y,et al. Intergranular corrosion of hot rooled plate 2519 aluminium alloy[J]. Corrosion Science and Protection Technology, 2004(1): 13-16.

 

[13]Allen C M, O′Reilly K A Q, Cantor B, et al. Intermetallic phase selection in 1XXX Al alloys[J]. Progress in Materials Science, 1998, 43:89-170. 

 

[14]刘宏亮,疏达,王俊,等. 超高强铝合金中杂质元素的研究现状[J]. 材料导报,2011,25(5):84-88.

 

Liu H L, Shu D, Wang J, et al. Research status on impurities in ultra high strength aluminum alloys[J]. Materials Reports, 2011, 25(5): 84-88.

 

[15]盖洪涛. Fe、Ni元素对2A12铝合金组织和性能的影响[J]. 热处理技术与装备,2014,35(4):14-16.

 

Gai H T. Effect of Fe and Ni element on microstructure and properties of 2A12 aluminum alloy[J]. Heat Treatment Technology and Equipment, 2014, 35(4): 14-16.

 

[16]陈志国,李世晨,刘祖耀,等. 微合金化对Al-4.0Cu-0.3Mg合金时效初期的微结构演变的计算机模拟[J].中国有色金属学报,2004,14(8):1274-1280.

 

Chen Z G, Li S C, Liu Z Y, et al. Computer simulation of microstructural evolution of microalloyed Al-4.0Cu-0.3Mg alloys[J]. The Chinese Journal of Nonferrous Metals, 2004,14(8): 1274-1280.

 

[17]王建. Cr、Sc对Al-Cu-Mg-Ag合金的组织与性能的影响[D].郑州:郑州大学,2015.

 

Wang J. The Influence of Cr and Sc on the Microstructure and the Mechanical Properties of Al-Cu-Mg-Ag Alloy[D]. Zhengzhou: Zhengzhou University, 2015.

 

[18]张坤,戴圣龙,杨守杰,等. Al-Cu-Mg-Ag系新型耐热铝合金研究进展[J]. 航空材料学报,2006(3):251-257.

 

Zhang K, Dai S L, Yang S J, et al. Development of a new creep resistant Al-Cu-Mg-Ag type alloy [J]. Journal of Aeronautical Materials, 2006(3): 251-257.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9