网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
辊弯成形对6061-T6铝合金板材微观组织及力学性能的影响
英文标题:Influence of roll forming on microstructure and mechanical properties of 6061-T6 aluminum alloy sheets
作者:刘山川 韩飞 
单位:北方工业大学 机械与材料工程学院 北京 100144 
关键词:辊弯成形 6061铝合金 微观组织 力学性能 织构 
分类号:TG376
出版年,卷(期):页码:2025,50(6):48-57
摘要:

 通过有限元仿真分析、电子背散射衍射和显微硬度实验,分别从宏微观层面探究了辊弯成形工艺对6061-T6铝合金板材微观组织及力学性能的影响。首先,建立了6061-T6铝合金辊弯成形过程的有限元仿真模型,通过实验与仿真相结合的方式分析了辊弯成形过程的应力、应变变化,确定了弯角区内外边缘的不同力学响应,并验证了仿真模型的有效性,为后续微观组织分析明确了表征位置。宏观分析结果表明:6061-T6铝合金的回弹角度与目标成形角度呈正相关,且经辊弯成形后,成形区域的硬度得到明显提升。微观分析结果显示:随着成形角度的增加,材料内外边缘晶粒得到明显细化,并呈现出织构类型从随机转变为逐渐一致的趋势,最终由锋锐的Cube织构和较强的{111}<112>织构组成。

The influences of roll forming process on the microstructure and mechanical properties of 6061-T6 aluminum alloy sheets were investigated by finite element simulation analysis, electron back scatter diffraction (EBSD) and microhardness experiments. Firstly, a finite element simulation model for the roll forming process of 6061-T6 aluminum alloy was established, and the stress and strain changes during the roll forming process were analyzed by combining experiments with simulations to determine the different mechanical responses at the inner and outer edges of bending corner area, and the effectiveness of the simulation model was verified, which clarified the characterization position for the subsequent microstructure analysis. The macroscopic analysis results show that the springback angle of 6061-T6 aluminum alloy is positively correlated with the target forming angle, and the hardness of he forming area is significantly improved after roll forming. The microscopic analysis results show that with the increasing of forming angle, the grains at the inner and outer edges of the material are significantly refined, and the texture type shows a trend of changing from random to gradually consistent, and finally consists of sharp Cube texture and strong {111}<112> texture.

基金项目:
国家自然科学基金资助项目(51074204);北京市自然科学基金-市教委联合项目(KZ201910009011);北京市属高校高水平教师队伍建设长城学者培养计划(TCD20190306);北京市教委基本科研项目(110052972027/024)
作者简介:
作者简介:刘山川(1998-),男,硕士研究生,E-mail:shanchuanmoon@163.com;通信作者:韩飞(1977-),男,博士,教授,E-mail:hanfei@ncut.edu.cn
参考文献:

[1]韩飞, 李荣健. 超高强钢多道次辊弯成形回弹规律研究[J]. 机械工程学报, 2019, 55(2):73-81.


 

Han F,Li R J. Springback law of ultra high strength steel in multiple stands roll forming process[J]. Journal of Mechanical Engineering, 2019, 55(2): 73-81.

 

[2]张福豹, 许晓静, 罗勇,等. 6xxx系铝合金微合金化的研究进展[J]. 材料导报, 2012, 26(5):384-388.

 

Zhang F B, Xu X J, Luo Y,et al. Research progress on microalloyed 6xxx series aluminum alloys[J]. Materials Review, 2012,26(5):384-388.

 

[3]仇建桐, 邓沛然, 邵威, 等. 6061铝合金热拉深成形研究[J]. 塑性工程学报, 2020, 27(9): 124-131.

 

Qiu J T, Deng P R, Shao W, et al. Study on hot deep drawing of 6061 aluminum alloy [J]. Journal of Plasticity Engineering, 2020, 27(9): 124-131.

 

[4]张西富, 马鸣图, 王刚刚,等. 6061-T6铝合金前防撞梁的开发与应用[J]. 铝加工, 2018(5): 15-20,37.

 

Zhang X F,Ma M T, Wang G G, et al. Developing and application of front anti-collision beam for 6061-T6 aluminium alloy[J]. Aluminium Fabrication, 2018(5): 15-20,37.

 

[5]Yang G, Hao J Q, Wang H Z, et al. The microstructure evolution of 6061 aluminum alloy during dieless rolling thermal deformation[J]. Procedia Manufacturing, 2020,50: 51-55.

 

[6]徐振, 张伟, 王洪斌,等. 温轧对6061铝合金铸轧板材显微组织和力学性能的影响(英文)[J]. 稀有金属材料与工程, 2020, 49(11): 3692-3701.

 

Xu Z, Zhang W, Wang H B,et al. Effect of warm rolling on microstructure and mechanical properties of 6061 aluminum alloy cast-rolled sheet[J]. Rare Metal Materials and Engineering, 2020, 49(11): 3692-3701.

 

[7]韩飞, 辛柏朴, 刘冉. 钛合金板材辊弯成形特性及显微组织和织构演化规律[J]. 中国有色金属学报, 2023, 33(6): 1804-1820.

 

Han F, Xin B P, Liu R. Roll forming characteristics and evolution law of microstructure and texture of titanium alloy sheet[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(6): 1804-1820.

 

[8]韩飞, 穆思超, 李姝. QP980高强钢在辊弯成形中的循环塑性行为和回弹预测[J/OL]. 材料工程,1-9[2023-04-27].http://kns.cnki.net/kcms/detail/11.1800.TB.20230427.0932. 002.html.

 

Han F, Mu S C, Li S. Cyclic plastic behavior and springback prediction of QP980 high strength steel in roll forming[J]. Journal of Materials Engineering,1-9[2023-04-27].http://kns.cnki.net/kcms/detail/11.1800.TB.20230427.0932.002.html.

 

[9]刘纯国, 李紫桐, 张学广,等. 考虑各向异性的铝合金型材辊弯断裂预测[J]. 吉林大学学报(工学版), 2023, 53(12): 3388-3396.

 

Liu C G, Li Z T, Zhang X G, et al. Prediction of fracture of aluminum alloy profiles in roll bending considering anisotropy[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(12): 3388-3396.

 

[10]李冲, 韩飞. 非对称截面辊弯成形扭曲有限元分析[J]. 锻压技术, 2023, 48(1): 66-71.

 

Li C, Han F. Finite element analysis on twist defect in roll forming of asymmetric section [J]. Forging & Stamping Technology, 2023, 48(1): 66-71.

 

[11]Wei Z D, Cao J G, Cheng J J, et al. Precise local deformation control for UHSS thin-walled component in roll forming[J]. Journal of Manufacturing Processes, 2024, 112:302-312.

 

[12]苏春建, 李雪梦, 王瑞,等. 基于六边界优化角度函数的多道次辊弯成形研究[J]. 精密成形工程, 2022, 14(8): 35-41.

 

Su C J, Li X M, Wang R, et al. Multi-pass roll forming based on six-boundary optimal angle function[J]. Journal of Netshape Forming Engineering, 2022, 14(8): 35-41.

 

[13]孙达, 苏春建, 张志国. 基于成形角度分配优化函数的辊弯成形边波及纵向弯曲缺陷研究[J]. 精密成形工程, 2022, 14(2): 110-116.

 

Sun D, Su C J, Zhang Z G. Edge and longitudinal bending defects in roll bending forming based on forming angle allocation optimization function [J]. Journal of Netshape Forming Engineering, 2022, 14(2): 110-116.

 

[14]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

 

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1:Method of test at room temperature[S].

 

[15]韩飞, 孙玮隆, 张若青. 不同弯曲方法对辊弯成形回弹的影响研究[J]. 中国机械工程, 2023, 34(19): 2353-2361.

 

Han F, Sun W L, Zhang R Q. Study on the influences of bending methods on springback in roll forming processes [J]. China Mechanical Engineering, 2023, 34(19): 2353-2361.

 

[16]章欧, 胡红军, 胡刚,等. 镁合金复合细晶强化研究进展[J]. 精密成形工程, 2021, 13(6): 98-105.

 

Zhang O, Hu H J, Hu G, et al. Research progress on composite refinement strengthening of magnesium alloy[J]. Journal of Netshape Forming Engineering, 2021, 13(6): 98-105.

 

[17]He G Y, Liu Z Y, Liu F. Effects of dislocation slip behaviour and second-phase particles on hot rolled texture of an Al-Cu-Mg alloy with a high Cu/Mg ratio[J]. Journal of Alloys and Compounds, 2022, 911: 168085.

 

[18]Massachusetts Institute of Technology. Nanoindentation: Recent Findings from Massachusetts Institute of Technology [R]. Cambridge, MA: Massachusetts Institute of Technology, 2010.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9