网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻造次数对纯钽组织、织构与硬度的影响
英文标题:Influence of forging passes on microstructure, texture and hardness of pure tantalum
作者:吴昊 贾志强 陈昊 张龙 
单位:西安诺博尔稀贵金属材料股份有限公司 陕西 西安 710201 
关键词:纯钽 锻造次数 微观组织 织构 维氏硬度 
分类号:TG316.2
出版年,卷(期):页码:2025,50(6):42-47
摘要:

纯钽的组织和织构会影响电子工业用钽靶的性能,为明确纯钽锻造过程中微观组织和织构的演变特征,在液压机上对电子束熔炼的纯钽进行锻造变形,随后进行1050 ℃退火处理,采用背散射衍射和显微硬度技术系统研究锻造次数(1~3次)对纯钽微观组织、织构、再结晶率及硬度的影响。结果表明:1次锻造退火后的纯钽组织粗大且再结晶率较低,仅为72%;随着锻造次数的增加,纯钽的平均再结晶晶粒尺寸逐渐减小,再结晶率逐渐增加。3次锻造退火后,纯钽内部形成了强烈的{111}<uvw>织构, 并且{111}晶粒占比达39.7%。维氏硬度随着锻造次数的增加而增大,3次锻造退火后的平均硬度值达到101.3 HV。

 The microstructure and texture of pure tantalum can affect the performance of tantalum target used in the electronics industry, therefore, in order to clarify the evolution characteristics of the microstructure and texture during the forging process of pure tantalum, the pure tantalum  melted by electron beam was forged on a hydraulic press and then annealed at 1050 ℃. Then, the influences of forging passes (1-3 passes) on the microstructure, texture, recrystallization rate and hardness of pure tantalum were systematically investigated by backscattered diffraction and microhardness techniques. The results show that the pure tantalum has a coarse microstructure and a low recrystallization rate of only 72% after one pass forging and annealing. With the increasing of forging pass, the average recrystallized grain size of pure tantalum gradually decreases and the recrystallization rate gradually increases. After three passes forging and annealing, a strong {111}<uvw> texture is formed inside the pure tantalum, and {111} grain accounts for 39.7%. The Vickers hardness increases with the increasing of forging pass, and the average hardness value after three passes forging and annealing reaches 101.3 HV.

基金项目:
国家重点研发计划(2018YFC1901704)
作者简介:
作者简介:吴昊(1994-),男,硕士,工程师,E-mail:1130008652@qq.com
参考文献:

[1]Michaluk C A. Correlating discrete orientation and grain size to the sputter deposition properties of tantalum[J]. Journal of Electronic Materials, 2002, 31(1): 2-9.


 

[2]Levine B R, Sporer S, Poggie R A, et al. Experimental and clinical performance of porous tantalum in orthopedic surgery[J]. Biomaterials, 2006, 27(27): 4671-4681.

 

[3]Cardonne S M, Kumar P, Michaluk C A, et al. Tantalum and its alloys[J]. International Journal of Refractory Metals and Hard Materials, 1995, 13(4): 187-194.

 

[4]Holloway K, Fryer P M, Cabral J C, et al. Tantalum as a diffusion barrier between copper and silicon: Failure mechanism and effect of nitrogen additions[J]. Journal of Applied Physics, 1992, 71(11): 5433-5444.

 

[5]Latt K M, Park H S, Li S H, et al. Behaviour of ionized metal plasma deposited Ta diffusion barrier between Cu and SiO2[J]. Journal of Materials Science, 2002, 37(10): 1941-1949.

 

[6]Li Z B, Zhang C H, Li G P, et al. Research on grain size controlling process of niobium target used for sputtering and coating[J]. Development and Application of Materials, 2010,25(6):33-35,39.

 

[7]Michaluk C A, Field D P, Nibur K A, et al. Effects of local texture and grain structure on the sputtering performance of tantalum[J]. Materials Science Forum, 2002, 408-412: 1615-1620.

 

[8]Choi G S, Lim J W, Munirathnam N R, et al. Preparation of 5N grade tantalum by electron beam melting[J]. Journal of Alloys and Compounds, 2009, 469(1-2): 298-303.

 

[9]Conte R A, Mermet J M, Rodrigues J D A,et al. Analysis of tantalum products by inductively coupled plasma atomic emission spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1997, 12(10): 1215-1220.

 

[10]康彦, 张小庆, 钟凯, 等. 退火温度对钽纤维用高纯钽棒再结晶织构及力学行为的影响[J]. 稀有金属材料与工程, 2023, 52(8): 2869-2875.

 

Kang Y, Zhang X Q, Zhong K, et al. Effect of annealing temperature on recrystallization texture and mechanical behavior of high purity tantalum used for tantalum fiber[J]. Rare Metal Materials and Engineering, 2023, 52(8): 2869-2875.

 

[11]Fan H Y, Liu S F, Deng C, et al. Quantitative analysis: How annealing temperature influences recrystallization texture and grain shape in tantalum[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 244-252. 

 

[12]Liu Y H, Liu S F, Zhu J L, et al. Strain path dependence of microstructure and annealing behavior in high purity tantalum[J]. Materials Science and Engineering: A, 2017, 707: 518-530.

 

[13]Deng C, Liu S F, Ji J L, et al. Texture evolution of high purity tantalum under different rolling paths[J]. Journal of Materials Processing Technology, 2014, 214(2): 462-469.

 

[14]Deng C, Liu S F, Hao X B, et al. Through-thickness texture gradient of tantalum sputtering target[J]. Rare Metals, 2017, 36: 523-526.

 

[15]Liu Y H, Liu S F, Deng C, et al. Inhomogeneous deformation of {111}<uvw> grain in cold rolled tantalum[J]. Journal of Materials Science & Technology, 2018, 34(11): 2178-2182.

 

[16]Zhou S Y, Liu S F, Zhao H, et al. Effects of initial textures on the microstructure and annealing behavior of tantalum after dynamic plastic deformation[J]. Materials Characterization, 2022, 192: 112247.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9