网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
不同锻造比对Q355D钢力学性能、耐腐蚀性能以及耐摩擦磨损性能的影响
英文标题:Influence of different forging ratios on mechanical properties, corrosion resistance and friction and wear resistance for Q355D steel
作者:范晨阳1 胡国享2 叶子昕3 王明涛4 韩天5 吴刘军5 
单位:1.中交第二航务工程局有限公司 湖北 武汉 430048 2. 江苏恒立液压股份有限公司 江苏 常州 213000 3. 中交武汉港湾工程设计研究院有限公司 湖北 武汉 430040 4. 中国船级社镇江办事处 江苏 镇江 212013 5. 江苏大学 机械工程学院 江苏 镇江 212013 
关键词:Q355D钢 锻造比 力学性能 耐腐蚀性能 耐摩擦磨损性能 
分类号:TG292
出版年,卷(期):页码:2025,50(6):8-17
摘要:

为满足大型油缸筒和活塞杆在力学性能和耐腐蚀性能方面的需求,对Q355D低合金高强度钢的锻造工艺进行了深入研究。利用光学显微镜(OM)、电子背散射衍射(EBSD)、激光共聚焦显微镜(LCM)等设备,模拟海洋环境,重点研究了不同锻造比(2.8、4.5和6.4)对Q355D钢力学性能、耐腐蚀性能以及耐摩擦磨损性能的影响。研究表明,随着锻造比的提高,Q355D钢组织的珠光体含量增加,铁素体和珠光体的晶粒尺寸细化,使得室温下其屈服强度和硬度逐渐增加。此外,锻造比的增加还提高了Q355D钢在质量分数为3.5%的NaCl溶液中的耐腐蚀性能和耐摩擦磨损性能。

 

To meet the mechanical properties and corrosion resistance requirements of large hydraulic cylinder barrels and piston rods, the forging process of Q355D low-alloy high-strength steel was studied in depth. Then, by optical microscopy (OM), electron backscatter diffraction (EBSD) and laser confocal microscopy (LCM), the marine environment was simulated  and the focus was on studying the influences of different forging ratios (2.8, 4.5 and 6.4) on the mechanical properties, corrosion resistance and friction and wear resistance of Q355D steel. The research shows that with the increasing of forging ratio, the content of pearlite in Q355D steel increases, and the grain size of ferrite and pearlite is refined, which gradually improves its yield strength and hardness at room temperature. In addition, the increase of forging ratio also improves the corrosion resistance and friction and wear resistance of Q355D steel in a NaCl solution with the mass fraction of 3.5%.

基金项目:
江苏省青年基金资助项目(BK20240854)
作者简介:
作者简介:范晨阳(1993-),女,硕士,工程师,E-mail:3148436640@qq.com;通信作者:吴刘军(1992-),女,博士,助理研究员,E-mail:jun561992@163.com
参考文献:

[1]Lu Y,Wang R Q,Han Q H, et al. Experimental investigation on the corrosion and corrosion fatigue behavior of butt weld with G20Mn5QT cast steel and Q355D steel under dry-wet cycle[J]. Engineering Failure Analysis, 2022,134:105977.


 

[2]Wei S, Shi X J, Wei S P, et al. Fatigue performance assessment of thick TIG-Dressing cruciform welded joints made by Q355D structural steel[J]. Journal of Materials Research and Technology,2023,27:5977-5993. 

 

[3]Chung R J, Tang X, Li D Y, et al. Effects of titanium addition on microstructure and wear resistance of hypereutectic high chromium cast iron Fe-25wt.%Cr-4wt.%C[J]. Wear,2009,267 (1-4):356-361. 

 

[4]Wang F, Qian D S, Hua L, et al. The effect of prior cold rolling on the carbide dissolution, precipitation and dry wear behaviors of M50 bearing steel[J]. Tribology International, 2019,132:253-264. 

 

[5]Pirtovek T V, Kugler G, Tercˇelj M. The behaviour of the carbides of ledeburitic AISI D2 tool steel during multiple hot deformation cycles[J]. Materials Characterization,2013,83:97-108.

 

[6]Di H S, Zhang X M, Wang G D, et al. Spheroidizing kinetics of eutectic carbide in the twin roll-casting of M2 high-speed steel[J]. Journal of Materials Processing Technology, 2005,166 (3):359-363.

 

[7]Huang W H, Zhong H G, Lei L P, et al. Microstructure and mechanical properties of multi-pass forged and annealed 42CrMo steel[J]. Materials Science and Engineering: A,2022, 831:142191. 

 

[8]Xu L J, Chen Z Q, Zheng Y F, et al. Deformation behavior and microstructure evolution of as-cast Ti2ZrMo0.5Nb0.5 high entropy alloy[J]. Journal of Materials Research and Technology,2021, 13:2469-2481. 

 

[9]Jiang J Z, Liu Y, Liu C M. Effect of forging ratio on the microstructure, mechanical properties and abrasive wear behavior of a new C-Cr-Mo-V martensitic steel[J]. Journal of Materials Research and Technology,2022, 19:4076-4091. 

 

[10]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

 

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1:Method of test at room temperature[S].

 

[11]Mansoor A, Du W B, Yu Z J, et al. Effects of grain refinement and precipitate strengthening on mechanical properties of double-extruded Mg-12Gd-2Er-0.4Zr alloy[J]. Journal of Alloys and Compounds,2022, 898:162873. 

 

[12]Cai Z H, Wang S K, Zhou Y J, et al. The synergistic effect of grain refinement and precipitation strengthening on mechanical properties and dry sliding wear behavior of medium manganese steels[J]. Tribology International,2023, 179:108158.

 

[13]Ke R, Hu C Y, Zhong M, et al. Grain refinement strengthening mechanism of an austenitic stainless steel: Critically analyze the impacts of grain interior and grain boundary[J]. Journal of Materials Research and Technology,2022, 17:2999-3012. 

 

[14]Masuda T, Sauvage X, Hirosawa S, et al. Achieving highly strengthened Al-Cu-Mg alloy by grain refinement and grain boundary segregation[J]. Materials Science and Engineering: A,2020, 793:139668. 

 

[15]AlMangour B, Baek M S, Grzesiak D, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting[J]. Materials Science and Engineering: A,2018,712:812-818. 

 

[16]Liu M Y, Shi B, Wang C, et al. Normal Hall-Petch behavior of mild steel with submicron grains[J]. Materials Letters,2003,57(19):2798-2802. 

 

[17]Gonzaga R A. Influence of ferrite and pearlite content on mechanical properties of ductile cast irons[J]. Materials Science and Engineering: A,2013,567:1-8.

 

[18]Archard J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics,1953, 24:981-988. 

 

[19]Huang R S, Yang H F, Sun P, et al. Effects of Mg contents on microstructures and corrosion behaviors of homogenization Al-Zn-Mg-Cu alloys[J]. Corrosion Science,2023,223: 111461. 

 

[20]Moghanni-Bavil-Olyaei H, Arjomandi H, Hosseini M. Effects of gallium and lead on the electrochemical behavior of Al-Mg-Sn-Ga-Pb as anode of high rate discharge battery[J]. Journal of Alloys and Compounds,2017, 695: 2637-2644.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9