[1]王胜龙, 杨滨, 张铭显, 等. 316LN不锈钢大型锻件镦粗过程中侧表面裂纹的预测 [J]. 热加工工艺, 2016, 45(1):86-88,95.
Wang S L, Yang B, Zhang M X, et al. Prediction of lateral surface crack for large-sized 316LN stainless steel forging during upsetting [J].Hot Working Technology, 2016, 45(1):86-88,95.
[2]栗文锋, 韩笑宇. DT14钢高温临界损伤值测定与计算机模拟 [J]. 大型铸锻件, 2018 (1):13-16.
Li W F,Han X Y. Determination of high temperature critical damage value and computer simulation of DT14 steel [J].Heavy Casting and Forging,2018(1):13-16.
[3]徐月, 刘建生. 12%Cr耐热钢裂纹萌生临界变形量 [J]. 锻压技术, 2024, 49(9):12-17.
Xu Y, Liu J S. Critical deformation amount of crack initiation for 12%Cr heat-resistant steel [J].Forging & Stamping Technology, 2024, 49(9):12-17.
[4]刘毅. 基于Lemaitre模型的铝合金损伤演化规律及断裂研究 [D]. 洛阳:河南科技大学, 2023.
Liu Y. Study on Damage Evolution and Fracture of Aluminium Alloys Based on the Lemaitre Model [J].Luoyang: Henan University of Science and Technology, 2023.
[5]陈学文, 张博, 白荣忍, 等. 不同损伤模型的TC4钛合金高温损伤数值仿真及裂纹预测 [J]. 河南科技大学学报(自然科学版), 2023, 44(2):1-7.
Chen X W, Zhang B, Bai R R, et al. Numerical simulation of high temperature damage and crack prediction of TC4 titanium alloy different damage models [J].Journal of Henan University of Science and Technology(Natural Science), 2023, 44(2):1-7.
[6]田继红, 陈彦龙, 袁海伦, 等. 12%Cr超超临界转子钢锻造裂纹机理分析及损伤模型建立 [J]. 塑性工程学报, 2022, 29(10):135-142.
Tian J H, Chen Y L, Yan H L, et al. Forging crack mechanism analysis and damage model establishment of 12%Cr ultra-supercritical rotor steel [J].Journal of Plasticity Engineering, 2022, 29(10):135-142.
[7]顾雯雯, 孙勇, 路成龙. 基于细观损伤模型的起重机械用低合金钢失效行为预测 [J]. 起重运输机械, 2024 (20):82-88.
Gu W W, Sun Y, Lu C L. Prediction of failure behavior prediction of low alloy steel for hoisting machinery based on meso-damage model [J].Hoisting and Conveying Machinery, 2024 (20):82-88.
[8]段继平, 唐湘林, 盛俊英, 等. 热挤压态FGH95合金热变形特性 [J]. 粉末冶金技术, 2024, 42(1):36-44.
Duan J P, Tang X L, Sheng J Y, et al. Hot deformation characteristics of hot extruded FGH95 superalloys [J].Powder Metallurgy Technology, 2024, 42(1):36-44.
[9]殷剑, 黎诚, 金康, 等. 7022铝合金的高温力学性能和材料本构方程研究 [J]. 锻压技术, 2023, 48(1):237-244.
Yin J, Li C, Jin K, et al. Study on high temperature mechanical properties and material constitutive equation for 7022 aluminum alloy [J].Forging & Stamping Technology, 2023, 48(1):237-244.
[10]刘佳琪, 陈学文, 皇涛, 等. 2A12铝合金临界损伤值测定及试验验证 [J]. 塑性工程学报, 2020, 27(1):131-137.
Liu J Q, Chen X W, Huang T, et al. Measurement and experimental validation of critical damage value for 2A12 aluminum alloy [J].Journal of Plasticity Engineering, 2020, 27(1):131-137.
[11] Xue L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading [J]. International Journal of Solids and Structures, 2007, 44(16):5163-5181.
[12]杜科学, 陈学文, 刘佳琪, 等. X12合金钢高温Normalized Cockcroft&Latham损伤模型及参数反求分析方法 [J]. 塑性工程学报, 2021, 28(4):174-180.
Du K X, Chen X W, Liu J Q, et al. High temperature Normalized Cockcroft & Latham damage model and inverse analysis method of parameter for X12 alloy steel [J].Journal of Plasticity Engineering, 2021, 28(4):174-180.
[13]张菁丽, 吴金平, 罗媛媛, 等. 基于Normalized Cockcroft & Latham韧性损伤准则Ti600合金临界损伤值的测定 [J]. 材料工程, 2019, 47(7):121-125.
Zhang J L, Wu J P, Luo Y Y, et al. Determination of critical damage value of Ti600 alloy based on Normalized Cockcroft & Latham ductile fracture criterion [J].Journal of Materials Engineering, 2019, 47(7):121-125.
|