网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
50Cr5NiMoV合金钢热变形损伤行为及镦粗裂纹预测
英文标题:Thermal deformation damage behavior of 50Cr5NiMoV alloy steel and prediction of upsetting crack
作者:于浩菲1 李玉贵2 赵广辉1 李娟1 鲁一波2 邹志杰2 郭美童2 
单位:1. 太原科技大学 重型机械教育部工程研究中心 2. 太原科技大学 机械工程学院 山西 太原 030024 
关键词:50Cr5NiMoV合金钢 热变形行为 临界损伤值 镦粗裂纹 断裂准则 
分类号:TG316.2
出版年,卷(期):页码:2025,50(6):1-7
摘要:

针对50Cr5NiMoV合金钢在锻造过程中易产生裂纹、孔洞等损伤缺陷的问题,系统研究了其热变形行为及临界损伤特性。采用Gleeble-3800热模拟试验机进行高温拉伸实验,获取了900~1200 ℃变形温度范围和0.001~1 s-1应变速率下的真应力-真应变曲线,通过线性拟合建立了Arrhenius本构方程。基于Normalized CockcroftLatham损伤模型,结合ZenerHollomon参数,确定了不同变形条件下的临界损伤值,构建了50Cr5NiMoV合金钢的热变形断裂准则。将修正后的应力-应变曲线和临界损伤值导入有限元软件,模拟分析了不同工艺参数下的镦粗过程,并与现场实际加工过程进行对比。研究结果表明:临界损伤值随着应变速率的增加而增大,随着温度的升高先增后减,在1000~1100 ℃区间达到最大值;镦粗过程中,损伤值随着变形量的增加而增大,当超过临界值时钢锭冒口端出现裂纹,与实际加工结果一致。研究结果为50Cr5NiMoV合金钢锻造工艺优化和裂纹预测提供了理论依据。

For the problem that 50Cr5NiMoV alloy steel was prone to damage defects such as cracks and holes during forging process, its hot deformation behavior and critical damage characteristics were systematically investigated. Then, the high-temperature tensile tests were conducted by thermal simulator Gleeble-3800 to obtain the true stress-true strain curves under the deformation temperature of 900-1200 ℃ and the strain rate of 0.001-1 s-1, and the Arrhenius constitutive equation was established by linear fitting. Furthermore, based on the Normalized Cockcroft-Latham damage model and combined with Zener-Hollomon parameter, the critical damage values under different deformation conditions were determined, and the hot deformation fracture criterion of 50Cr5NiMoV alloy steel was constructed. The modified stress-strain curves and critical damage values were implemented in finite element software to simulate and analyze the upsetting process under different process parameters, and the actual processing process on site was compared. The research results demonstrate that the critical damage value increases with the increasing of strain rate, increases first and then decreases with the increasing of temperature, and reaches the maximum value at 1000-1100 ℃. During the upsetting process, the damage value increases with the increasing of deformation amount, and cracks appear at the riser end of ingot when it exceeds the critical value, which is consistent with the actual processing results. Thus, the research results provide a theoretical basis for the optimization of forging process and crack prediction of 50Cr5NiMoV alloy steel.

基金项目:
山西省基础研究计划(TZLH20230818001,202303011211004);国家自然科学基金资助项目(52375364);太原科技大学科研启动基金(20242041, 20242094);山西省高等教育科技创新计划(2024L211)
作者简介:
作者简介:于浩菲(1997-),女,博士研究生,E-mail:haofei0929@163.com;通信作者:李玉贵(1967-),男,博士,教授,E-mail:lygtykd@163.com
参考文献:

[1]王胜龙, 杨滨, 张铭显, 等. 316LN不锈钢大型锻件镦粗过程中侧表面裂纹的预测 [J]. 热加工工艺, 2016, 45(1):86-88,95.


 

Wang S L, Yang B, Zhang M X, et al. Prediction of lateral surface crack for large-sized 316LN stainless steel forging during upsetting [J].Hot Working Technology, 2016, 45(1):86-88,95.

 

[2]栗文锋, 韩笑宇. DT14钢高温临界损伤值测定与计算机模拟 [J]. 大型铸锻件, 2018 (1):13-16.

 

Li W F,Han X Y. Determination of high temperature critical damage value and computer simulation of DT14 steel [J].Heavy Casting and Forging,2018(1):13-16.

 

[3]徐月, 刘建生. 12%Cr耐热钢裂纹萌生临界变形量 [J]. 锻压技术, 2024, 49(9):12-17.

 

Xu Y, Liu J S. Critical deformation amount of crack initiation for 12%Cr heat-resistant steel [J].Forging & Stamping Technology, 2024, 49(9):12-17. 

 

[4]刘毅. 基于Lemaitre模型的铝合金损伤演化规律及断裂研究 [D]. 洛阳:河南科技大学, 2023.

 

Liu Y. Study on Damage Evolution and Fracture of Aluminium Alloys Based on the Lemaitre Model [J].Luoyang: Henan University of Science and Technology, 2023.

 

[5]陈学文, 张博, 白荣忍, 等. 不同损伤模型的TC4钛合金高温损伤数值仿真及裂纹预测 [J]. 河南科技大学学报(自然科学版), 2023, 44(2):1-7.

 

Chen X W, Zhang B, Bai R R, et al. Numerical simulation of high temperature damage and crack prediction of TC4 titanium alloy different damage models [J].Journal of Henan University of Science and Technology(Natural Science), 2023, 44(2):1-7.

 

[6]田继红, 陈彦龙, 袁海伦, 等. 12%Cr超超临界转子钢锻造裂纹机理分析及损伤模型建立 [J]. 塑性工程学报, 2022, 29(10):135-142.

 

Tian J H, Chen Y L, Yan H L, et al. Forging crack mechanism analysis and damage model establishment of 12%Cr ultra-supercritical rotor steel [J].Journal of Plasticity Engineering, 2022, 29(10):135-142.

 

[7]顾雯雯, 孙勇, 路成龙. 基于细观损伤模型的起重机械用低合金钢失效行为预测 [J]. 起重运输机械, 2024 (20):82-88.

 

Gu W W, Sun Y, Lu C L. Prediction of failure behavior prediction of low alloy steel for hoisting machinery based on meso-damage model [J].Hoisting and Conveying Machinery, 2024 (20):82-88.

 

[8]段继平, 唐湘林, 盛俊英, 等. 热挤压态FGH95合金热变形特性 [J]. 粉末冶金技术, 2024, 42(1):36-44.

 

Duan J P, Tang X L, Sheng J Y, et al. Hot deformation characteristics of hot extruded FGH95 superalloys [J].Powder Metallurgy Technology, 2024, 42(1):36-44. 

 

[9]殷剑, 黎诚, 金康, 等. 7022铝合金的高温力学性能和材料本构方程研究 [J]. 锻压技术, 2023, 48(1):237-244.

 

Yin J, Li C, Jin K, et al. Study on high temperature mechanical properties and material constitutive equation for 7022 aluminum alloy [J].Forging & Stamping Technology, 2023, 48(1):237-244.

 

[10]刘佳琪, 陈学文, 皇涛, 等. 2A12铝合金临界损伤值测定及试验验证 [J]. 塑性工程学报, 2020, 27(1):131-137.

 

Liu J Q, Chen X W, Huang T, et al. Measurement and experimental validation of critical damage value for 2A12 aluminum alloy [J].Journal of Plasticity Engineering, 2020, 27(1):131-137.

 

[11] Xue L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading [J]. International Journal of Solids and Structures, 2007, 44(16):5163-5181. 

 

[12]杜科学, 陈学文, 刘佳琪, 等. X12合金钢高温Normalized Cockcroft&Latham损伤模型及参数反求分析方法 [J]. 塑性工程学报, 2021, 28(4):174-180.

 

Du K X, Chen X W, Liu J Q, et al. High temperature Normalized Cockcroft & Latham damage model and inverse analysis method of parameter for X12 alloy steel [J].Journal of Plasticity Engineering, 2021, 28(4):174-180.

 

[13]张菁丽, 吴金平, 罗媛媛, 等. 基于Normalized Cockcroft & Latham韧性损伤准则Ti600合金临界损伤值的测定 [J]. 材料工程, 2019, 47(7):121-125.

 

Zhang J L, Wu J P, Luo Y Y, et al. Determination of critical damage value of Ti600 alloy based on Normalized Cockcroft & Latham ductile fracture criterion [J].Journal of Materials Engineering, 2019, 47(7):121-125.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9