网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
金属塑性变形数值流形模拟的运动边界处理方法
英文标题:Moving boundary treatment method for numerical manifold simulation of metal plastic deformation
作者:黄家安1 章争荣1 2 
单位:1.广东工业大学 材料与能源学院 广东 广州 510000 2.广东省金属成形加工与锻压装备技术重点实验室 广东 广州 510006 
关键词:金属塑性成形 数值流形法 运动边界 高斯积分 流形单元 
分类号:TG316
出版年,卷(期):页码:2025,50(5):294-300
摘要:

基于数值流形法(NMM),对金属塑性成形过程进行数值模拟研究。介绍了NMM的基本理论,该方法通过数学网格和物理网格对求解域进行划分,对变形过程中的边界流形单元进行了分类处理,通过跟踪运动界面与数学网格的相交情况,构建出32种边界流形单元类型,并基于NMM近似函数构建和标准矩形数学覆盖网格的特点,提出采用高斯积分法进行流形单元数值积分。结合高斯积分点及其权重系数,对积分点和不规则积分区域进行映射处理并完成积分计算。与有限元法不同,NMM无需进行偏导数映射和雅可比矩阵计算,仅需进行坐标变换和面积映射即可处理不规则形状单元的数值积分。研究结果为NMM在金属塑性成形数值模拟中的应用提供了理论基础。

Based on the numerical manifold method (NMM), the numerical simulation of metal plastic forming process was studied. The basic theory of NMM was introduced, which divided the solution domain by mathematical grid and physical grid, and classified and processed the boundary manifold elements in the deformation process. By tracking the intersection of motion interface and mathematical grid, thirty-two kinds of boundary manifold element types were constructed. Based on the characteristics of NMM approximation function construction and the standard rectangular mathematical covering grid, Gauss integral method was proposed for numerical integration of manifold elements. Combined with the Gauss integral point and their weight coefficient, the integral points and the irregular integral area were mapped and the integral calculation was completed. Different from the finite element method, the partial derivative mapping and Jacobian matrix calculation were not required for NMM, only the coordinate transformation and area mapping were needed to deal with the numerical integration of irregular shape elements. The research results provide a theoretical basis for the application of NMM in the numerical simulation of metal plastic forming.

基金项目:
国家自然科学基金面上项目(52175294)
作者简介:
作者简介:黄家安(2000-),男,硕士研究生,E-mail:1162494408@qq.com;通信作者:章争荣(1969-),男,博士,教授,E-mail:zzr@gdut.edu.com
参考文献:


[1]陆璐,王照旭,崔红霞.塑性有限元在金属体积成形过程中应用的进展
[J].材料导报,2016,30(1):106-110.


 

Lu L, Wang Z X, Cui H X. Progress of application of finite element method in metals massive forming process
[J]. Materials Reports,2016,30(1):106-110.

 


[2]王继晨,刘飞,鲍益东,等. 基于无网格法的镁合金等温锻造成形模拟分析
[J]. 锻压技术,2023,48(2):10-15.

 

Wang J C, Liu F, Bao Y D, et al. Simulation and analysis on isothermal forging for magnesium alloy based on meshless method
[J]. Forging & Stamping Technology,2023,48(2):10-15.

 


[3]吴欣,赵国群,管延锦.大变形成形过程刚塑性无网格伽辽金方法
[J].中国机械工程,2006,17(19):1984-1987.

 

Wu X, Zhao G Q, Guan Y J. Rigid-plastie meshless galerkin method in large metal deformation analysis
[J]. China Mechanical Engineering,2006,17(19):1984-1987.

 


[4]张雄,刘岩,马上.无网格法的理论及应用
[J].力学进展,2009,39(1):1-36.

 

Zhang X, Liu Y, Ma S. Meshfree methods and their applications
[J]. Advances in Mechanics,2009,39(1):1-36.

 


[5]张湘伟,章争荣,吕文阁.数值流形方法研究及应用进展
[J].力学进展,2010,40(1):1-12.

 

Zhang X W, Zhang Z R, Lyu W G. Advances and perspectives in numerical manifold method and its applications
[J]. Advances in Mechanics,2010,40(1):1-12.

 


[6]Tan F, Tong D F, Liang J W, et al. Two-dimensional numerical manifold method for heat conduction problems
[J]. Engineering Analysis with Boundary Elements, 2022,137:119-138.

 


[7]Zhang N, Li X, Jiang Q H, et al. Rotation errors in numerical manifold method and a correction based on large deformation theory
[J]. Frontiers of Structural and Civil Engineering, 2019,13:1036-1053.

 


[8]Zhou G L, Xu T, Zhu W C, et al. A damage-based numerical manifold approach to crack propagation in rocks
[J]. Engineering Analysis with Boundary Elements, 2020,117:76-88.

 


[9]Wei W, Jiang Q H. A modified numerical manifold method for simulation of finite deformation problem
[J]. Applied Mathematical Modelling,2017,48:673-687.

 


[10]Ma G W, An X M, He L. The numerical manifold method: A review
[J]. International Journal of Computational Methods, 2010, 7(1): 1-32.

 


[11]石根华.Numerical Manifold Method(NMM) and Discontinuous Deformation Analysis(DDA)
[M]. 裴觉民, 译. 北京: 淸华大学出版社, 1997.

 

Shi G H. Numerical Manifold Method (NMM) and Discontinuous Deformation Analysis (DDA)
[M]. Translated by Pei J M. Beijing: Tsinghua University Press,1997.

 


[12]Fan H, Huang D R, Wang G. Quadrilateral-area-coordinate-based numerical manifold method accommodating static and dynamic analysis
[J]. Engineering Analysis with Boundary Elements, 2022,134:315-340.

 


[13]李庆扬,王能超,易大义.数值分析
[M]. 5版. 武汉: 华中科技大学出版社,2018.

 

Li Q Y, Wang N C, Yi D Y. Numerical Analysis
[M]. 5th Edition. Wuhan: Huazhong University of Science & Technology Press,2018.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9