网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
止血钳裙边冲裁的视觉定位机器人上料方法及其装置的研制
英文标题:Feeding method of visual positioning robot for hemostatic forceps skirt edge trimming and development of its device
作者:李蕾1 2 杨振宇1 李玉胜1 3 刘发英4 
单位:1.山东理工大学 机械工程学院 山东 淄博 255000 2.滨州市技师学院 机械工程系 山东 滨州 256600 3.山东工智科技有限公司 山东 淄博 255000 4.山东理工大学 电气与电子工程学院 山东 淄博 255000 
关键词:止血钳 裙边冲裁 图像处理 视觉定位 机器人上料 
分类号:TP249
出版年,卷(期):页码:2025,50(5):211-218
摘要:

针对止血钳裙边冲裁工作效率低、劳动强度大、危险系数高等问题,提出了一种基于视觉定位的止血钳裙边冲裁机器人上料方法。搭建了机器视觉试验台,通过纠偏基准图像逆向采集策略完成图像采集,对图像进行预处理并运用亚像素方法提高边缘精度;通过模板匹配的方法获取止血钳抓取件位与基准位的位置偏差,并进行位置纠偏,最后由机器人将止血钳送至冲床凹模完成上料。试验结果表明,机器人自动上料的定位成功率可达96%以上,可满足止血钳裙边冲裁机器人自动上料的需求,平均日冲压量可达15000件,显著提高了冲压效率。研究内容可为冲床自动上料提供技术支持。

For the problems of low feeding efficiency, high labor intensity and high risk coefficient in the hemostatic forceps skirt edge trimming, a robot feeding method of hemostatic forceps skirt edge trimming based on visual positioning was proposed. The machine vision test platform was built, and the image acquisition was completed by the reverse acquisition strategy of correction reference image, then the image was preprocessed, whose edge accuracy was improved by the sub-pixel method. The position deviation between gripping position of hemostatic forceps and reference position was obtained by the template matching method, and the position deviation was corrected. Finally, the robot sent the hemostatic forceps to the die to complete the feeding. The experimental results show that the positioning success rate of the robot automatic feeding can reach more than 96%, which can meet the demand of the robot automatic feeding of hemostatic forceps skirt edge trimming. The average daily stamping capacity can reach 15000 pieces, and the stamping efficiency can be significantly improved. Thus, the research content can provide technical support for the automatic feeding of punch press.

基金项目:
山东省科技型中小企业创新能力提升工程项目(2023TSGC0981)
作者简介:
作者简介:李蕾(1991-),男,硕士研究生,E-mail:boxinglilei@163.com;通信作者:杨振宇(1973-),男,工学博士,副教授,E-mail:05338@163.com
参考文献:


[1]石磊,汪建余,孙胜伟,等.基于视觉检测技术的冲压收料线监测系统开发
[J].锻压技术,2023,48(9):184-189.


 

Shi L, Wang J Y, Sun S W, et al. Development on monitoring system for stamping receiving line based on visual inspection technology
[J]. Forging & Stamping Technology,2023,48(9):184-189.

 


[2]刘鹏祥,王冰,吕达.基于机器人3D视觉引导的汽车空腔自动发泡研究
[J].机床与液压,2023,51(1):120-124.

 

Liu P X,Wang B,Lyu D. Automatic foaming application of automobile cavity based on robot 3D vision guidance
[J]. Machine Tool & Hydraulics,2023,51(1):120-124.

 


[3]李长安,张丹,隋文涛,等.基于机器视觉的曲轴圆度误差评定
[J].机床与液压,2023,51(20):77-80.

 

Li C A,Zhang D,Sui W T,et al.Evaluation of crankshaft roundness error based on machine vision
[J].Machine Tool & Hydraulics,2023,51(20):77-80.

 


[4]王春光,李俊杰,王伟,等.基于机器视觉的机油冷却管圆度检测与分拣研究
[J].机床与液压,2022,50(15):31-37.

 

Wang C G,Li J J,Wang W, et al. Research on roundness detection and sorting of oil cooling pipe based on machine vision
[J].Machine Tool & Hydraulics,2022,50(15):31-37.

 


[5]金守峰,焦航.基于机器视觉的钢领内圈圆度检测方法
[J].毛纺科技,2022,50(4):83-88.

 

Jin S F,Jiao H.Detection method of roundness of steel collar inner ring based on machine vision
[J].Wool Textile Journal,2022,50(4):83-88.

 


[6]Kshaurad K,Kiran M B,Shanmuganatan S P. Minimum zone tolerance algorithm to detect roundness error for machined rods using vision system
[J].Materials Today:Proceedings,2021,46:5997-6003.

 


[7]秦豆豆,卢军.工件外观识别与视觉检测技术的研究
[J].组合机床与自动化加工技术,2018(9):84-87,91.

 

Qin D D,Lu J.The research on appearance recognition and visual inspection technology of workpiece
[J].Modular Machine Tool & Automatic Manufacturing Technique,2018(9):84-87,91.

 


[8]巩育江,庞亚军,王汞,等.基于几何特征的点云分割算法研究进展
[J].激光技术,2022,46(3):326-336.

 

Gong Y J,Pang Y J,Wang G, et al. Research progress of point clouds segmentation algorithms based on geometric features
[J].Laser Technology,2022,46(3):326-336.

 


[9]张杨,高兴宇,党艳阳,等.基于三维图像处理的车刀磨损缺陷检测方法研究
[J].机床与液压,2023,51(24):43-47.

 

Zhang Y, Gao X Y,Dang Y Y, et al. Research on tool wear defect detection method based on 3D image processing
[J].Machine Tool & Hydraulics,2023,51(24):43-47.

 


[10]Khalili K,Vahidnia M. Improving the accuracy of crack length measurement using machine vision
[J].Procedia Technology,2015,19:48-55.

 


[11]Jiang T,Cu H H,Cheng X S,et al.A measurement method for robot peg-in-hole prealignment based on combined two-level visual sensors
[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-12.

 


[12]黄柳倩.基于机器视觉的冲压件缺陷检测系统研究
[D].广州:广东工业大学,2012.

 

Huang L Q.Research on Stamping Parts Inspection Based on Machine Vision
[D]. Guangzhou:Guangdong University of Technology,2012.

 


[13]马超,曹国华,丁红昌.基于工业机器人的图像引导圆孔定位方法
[J].机床与液压,2023,51(3):50-56.

 

Ma C,Cao G H,Ding H C. Image guided circular hole positioning method based on industrial robots
[J].Machine Tool & Hydraulics,2023,51(3):50-56.

 


[14]薛飞,刘立群.基于OTSU算法的苹果果实病斑图像分割方法
[J].计算机技术与发展,2020,30(12):181-185.

 

Xue F,Liu L Q. Image segmentation method of apple fruit spots based on OTSU algorithm
[J].Computer Technology and Development,2020,30(12):181-185.

 


[15]路彬彬,贾振红,何迪,等.基于混合蛙跳算法改进的OTSU遥感图像分割方法
[J].计算机应用与软件,2011,28(9):77-79.

 

Lu B B,Jia Z H,He D, et al. Remote sensing image segmentation method based on improved OTSU and shuffled frog leaping algorithm
[J].Computer Applications Software,2011,28(9):77-79.

 


[16]梁宇宁,王绍华,金向明,等.基于区域划分与标准时间的手部异常行为检测
[J].北京航空航天大学学报,2021,47(10):1969-1979.

 

Liang Y N,Wang S H,Jin X M, et al. Abnormal hand behavior detection based on area division and standard time
[J].Journal of Beijing University of Aeronautics and Astronautics,2021,47(10):1969-1979.

 


[17]王树才,陶凯,李航.基于机器视觉定位的家禽屠宰净膛系统设计与试验
[J].农业机械学报,2018,49(1):335-343.

 

Wang S C,Tao K,Li H. Design and experiment of poultry eviscerator system based on machine vision positioning
[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(1):335-343.

 


[18]何红军,张东宁,马传宝.机械手臂重复定位精度和运动速度测量实验研究
[J].微特电机,2016,44(3):35-37.

 

He H J,Zhang D N,Ma C B. Experimental study on the accuracy and speed of the mechanical arm movement based on actuating motor
[J].Small & Special Electrical Machines,2016,44(3):35-37.

 


[19]邓辉,谢俊,孟广月,等.基于机器视觉的重复定位精度测量技术
[J].电子测量技术,2014,37(12):45-48.

 

Deng H,Xie J,Meng G Y et al. Repeat positioning accuracy measurement technology based on machine vision
[J].Transactions of the Electronic Measurement Technology,2014,37(12):45-48.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9