网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
300M钢起落架作动筒挤压成形数值模拟
英文标题:Numerical simulation of extrusion forming for 300M steel landing gear actuator
作者:李波1 韩文1 韩顺2 刘男3 王建国3 厉勇2 王春旭2 张新全1 
单位:1. 航空工业第一飞机设计研究院 陕西 西安 710089 2. 钢铁研究总院有限公司 特殊钢研究院 北京 100081 3. 西北工业大学 材料学院 陕西 西安 710072 
关键词:起落架作动筒 300M钢 反挤压 挤压温度 挤压速率 
分类号:TG376.2
出版年,卷(期):页码:2025,50(5):165-172
摘要:

针对飞机起落架传统制造工艺中成形载荷大、材料利用率低、生产周期长等问题,提出利用反挤压工艺制造300M钢起落架作动筒件,设计了反挤压模具及坯料形状,并使用Deform-3D进行有限元模拟,分析了挤压温度为1050~1150 ℃、挤压速率为30~120 mm·s-1时挤压过程中温度、等效应变、挤压力的变化规律。结果表明:随着挤压温度或挤压速率的上升,锻件温度均呈上升趋势,但温度分布规律基本不变;锻件挤压前期的挤压力随挤压温度的上升而降低,后期挤压力差异不显著;高挤压速率下初始挤压载荷较大,但曲线更加平稳,挤压温度为1050 ℃、挤压速率为120 mm·s-1时挤压载荷基本稳定在6.0×106 N;不同挤压温度和挤压速率下的平均应变差分别为4.55%和3.41%,其等效应变量比例和分布规律差别很小。综合分析,最佳工艺参数组合为挤压温度为1130 ℃、挤压速率为30~50 mm·s-1。

For the problems of large forming load, low material utilization rate and long production cycle in the traditional manufacturing process of aircraft landing gear, the backward extrusion process was proposed to manufacture 300M steel landing gear actuator, and the backward extrusion die and blank shape were designed. Then, the finite element simulation was carried out by Deform-3D, and the change laws of temperature, equivalent strain and extrusion force during the extrusion process were analyzed at the extrusion temperature of 1050-1150 ℃ and the extrusion rate of 30-120 mm·s-1. The results show that with the increasing of extrusion temperature or extrusion rate, the temperature of forgings shows an upward trend, but the temperature distribution law remains basically unchanged. The extrusion force in the early stage of forgings extrusion decreases with the increasing of extrusion temperature, and the difference of extrusion force in the later stage is not significant. The initial extrusion load at high extrusion rate is larger, but the curve is more stable. When the extrusion temperature is 1050 ℃ and the extrusion rate is 120 mm·s-1, the extrusion load is basically stable at 6.0×106 N. The average strain differences under different extrusion temperatures and extrusion rates are 4.55% and 3.41%, respectively, and the differences in the proportion and distribution law of equivalent strain amounts are very small. Comprehensive analysis shows that the best process parameters combination obtained is the extrusion temperature of 1130 ℃ and the extrusion rate of 30-50 mm·s-1.

基金项目:
国家重点研发计划(2022YFB3705200)
作者简介:
作者简介:李波(1981-),女,硕士,高级工程师,E-mail:372707201@qq.com;通信作者:韩顺(1987-),男,博士,正高级工程师,E-mail:hanshunfa@126.com
参考文献:


[1]陈永新. 飞机起落架系统简介
[J]. 大众科技,2014,16(6): 127-128,130.


 

Chen Y X. Introduction to aircraft landing gear system
[J]. Popular Science & Technology, 2014, 16(6): 127-128,130.

 


[2]Armaan A, Keshav S, Srinivas G. A step towards safety: Material failure analysis of landing gear
[J]. Materials Today: Proceedings, 2020.

 


[3]赵博, 许广兴, 贺飞, 等. 飞机起落架用超高强度钢应用现状及展望
[J]. 航空材料学报,2017,37(6): 1-6.

 

Zhao B, Xu G X, He F, et al. Present status and prospect of ultra high strength steel applied to aircraft landing gear
[J]. Journal of Aeronautical Materials, 2017, 37(6): 1-6.

 


[4]杨欢. 300M钢高温变形行为及模锻成形工艺研究
[D]. 秦皇岛: 燕山大学,2021.

 

Yang H. Study on High Temperature Deformation Behavior and Die Forging Process of 300M Steel
[D]. Qinhuangdao: Yanshan University, 2021.

 


[5]黄顺喆, 厉勇, 王春旭, 等. 300M钢的热变形行为研究
[J]. 热加工工艺, 2010, 39(20): 25-28.

 

Huang S Z, Li Y, Wang C X, et al. Investigation on hot deformation behavior of 300M steel
[J]. Hot Working Technology, 2010, 39(20): 25-28.

 


[6]张海成, 昌春艳, 曾德涛, 等. 基于摩擦修正的单真空300M超高强度钢本构模型
[J]. 锻压技术, 2023, 48(6): 245-252.

 

Zhang H C, Chang C Y, Zeng D T, et al. Constitutive model on single vacuum 300M ultra-high strength steel based on friction correction
[J]. Forging & Stamping Technology, 2023, 48(6): 245-252.

 


[7]杨昭明,罗小安. 先进工艺在飞机起落架制造中的应用
[J]. 航空制造技术,2005(6): 100-103.

 

Yang Z M, Luo X A. Application of advanced manufacturing technology in aircraft undercarriage production
[J]. Aeronautical Manufacturing Technology, 2005(6): 100-103.

 


[8]曾凡昌. 锻压先进制造技术及在航空工业领域的应用
[J]. 航空制造技术,2009(6): 26-29.

 

Zeng F C. Advanced forging manufacturing technology and its application in aviation industry
[J]. Aeronautical Manufacturing Technology, 2009(6): 26-29.

 


[9]李春刚, 孟清河. 起落架大型结构件深孔加工技术研究
[J]. 机械制造与自动化,2015,44(2): 68-70,89.

 

Li C G, Meng Q H. Study of deep hole machining technology for landing gear large structural parts
[J]. Machine Building & Automation, 2015, 44(2): 68-70,89.

 


[10]李铭. 大型飞机起落架制造技术
[J]. 航空制造技术,2008(21): 68-71.

 

Li M. Manufacturing technology for large aircraft undercarriage
[J]. Aeronautical Manufacturing Technology, 2008(21): 68-71.

 


[11]孙艳坤,张威. 民机起落架用材料的发展与研究现状
[J]. 热加工工艺,2018,47(20): 22-24,29.

 

Sun Y K, Zhang W. Development and research status of materials used for landing gear of civil aircraft
[J]. Hot Working Technology, 2018, 47(20): 22-24,29.

 


[12]张慧萍,王崇勋,杜煦.飞机起落架用300M超高强钢发展及研究现状
[J]. 哈尔滨理工大学学报,2011,16(6): 73-76.

 

Zhang H P, Wang C X, Du X. Aircraft landing gear with the development of 300M ultra high strength steel and research
[J]. Journal of Harbin University of Science and Technology, 2011, 16(6): 73-76.

 


[13]赵明杰,邓磊,孙朝远,等. 300M高强钢大型构件全流程锻造变形机理及工艺研究进展
[J]. 科学通报,2022,67(11): 1036-1053.

 

Zhao M J, Deng L, Sun C Y, et al. Advances on the deformation mechanism and forging technology of 300M high-strength steel heavy components in the whole forging process
[J]. Chinese Science Bulletin, 2022,67(11): 1036-1053.

 


[14]祁荣胜,景阳端,刘鑫刚,等. 300M高强钢热变形行为及其热加工图
[J]. 塑性工程学报,2016,23(2): 130-135.

 

Qi R S, Jing Y R, Liu X G, et al. Hot deformation behavior and hot processing map for 300M high strength steel
[J]. Journal of Plasticity Engineering, 2016, 23(2): 130-135.

 


[15]唐华. 超高强度钢40CrNi2Si2MoVA强韧化工艺研究
[D]. 成都: 西南交通大学, 2006.

 

Tang H. The Study on Process of Improving Strength and Toughness of 40CrNi2Si2MoVA Steel
[D]. Chengdu: Southwest Jiaotong University, 2006.

 


[16]许忠智, 韩顺, 韩文, 等. 铸态300M钢双锥试样热压缩行为
[J]. 锻压技术, 2023, 48(11): 232-237.

 

Xu Z Z, Han S, Han W, et al. Thermal compression behaviors of as-cast 300M steel biconcal specimen
[J]. Forging & Stamping Technology, 2023, 48(11): 232-237.

 


[17]郭鹏.300M钢热变形和热处理过程中微观组织演化和力学性能优化研究
[D].武汉:华中科技大学,2023.

 

Guo P. Research on Microstructure Evolution and Mechanical Properties Optimization of 300M Steel During Hot Deformation and Heat Treatment
[D].Wuhan: Huazhong University of Science and Technology, 2023.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9